我必须打印目录树。 我有以下代码:
public static void main(String[] args) throws Exception
{
File root = new File("C:\\Users\\User\\Desktop\\example");
if (!root.isDirectory())
{
throw new IllegalArgumentException("Invalid directory: " + root.getName());
}
int level = 0;
System.out.println(renderFolder(root, level, new StringBuilder(), false));
}
private static StringBuilder renderFolder(File folder, int level, StringBuilder sb, boolean isLast)
{
indent(sb, level, isLast).append(folder.getName()).append("\n");
File[] objects = folder.listFiles();
for (int i = 0; i < objects.length; i++)
{
boolean last = ((i + 1) == objects.length);
if (objects[i].isDirectory())
{
renderFolder(objects[i], level + 1, sb, last);
}
}
return sb;
}
private static StringBuilder indent(StringBuilder sb, int level, boolean isLast)
{
for (int i = 1; i < level; i++)
{
sb.append("\u2502 ");
}
if (level > 0)
{
sb.append(isLast
? "\u2514\u2500\u2500"
: "\u251c\u2500\u2500");
}
return sb;
}
使用此输出:
example
├──a
└──b
│ └──b1
│ │ ├──b11
│ │ │ └──b111
│ │ └──b12
│ │ │ ├──b121
│ │ │ └──b122
│ │ │ │ └──b1221
我没有设法删除无用的深线。怎么做?
我的回答是:“如何保持线路连接(与cmd的树命令一样多)?”
答案 0 :(得分:2)
import java.io.File;
public class FileAssert {
/**
* Pretty print the directory tree and its file names.
*
* @param folder
* must be a folder.
* @return
*/
public static String printDirectoryTree(File folder) {
if (!folder.isDirectory()) {
throw new IllegalArgumentException("folder is not a Directory");
}
int indent = 0;
StringBuilder sb = new StringBuilder();
printDirectoryTree(folder, indent, sb);
return sb.toString();
}
private static void printDirectoryTree(File folder, int indent,
StringBuilder sb) {
if (!folder.isDirectory()) {
throw new IllegalArgumentException("folder is not a Directory");
}
sb.append(getIndentString(indent));
sb.append("+--");
sb.append(folder.getName());
sb.append("/");
sb.append("\n");
for (File file : folder.listFiles()) {
if (file.isDirectory()) {
printDirectoryTree(file, indent + 1, sb);
} else {
printFile(file, indent + 1, sb);
}
}
}
private static void printFile(File file, int indent, StringBuilder sb) {
sb.append(getIndentString(indent));
sb.append("+--");
sb.append(file.getName());
sb.append("\n");
}
private static String getIndentString(int indent) {
StringBuilder sb = new StringBuilder();
for (int i = 0; i < indent; i++) {
sb.append("| ");
}
return sb.toString();
}
}
答案 1 :(得分:1)
尝试这个,我在你的方法中添加了另一个名为hierarchyTree的参数来指示是否在某个级别,我们应该打印|或空的空间。
它用作堆栈,可以根据递归级别轻松维护文件夹级别。
private static StringBuilder renderFolder(File folder, int level, StringBuilder sb, boolean isLast, List<Boolean> hierarchyTree) {
indent(sb, level, isLast, hierarchyTree).append(folder.getName()).append("\n");
File[] objects = folder.listFiles(new FilenameFilter() {
@Override
public boolean accept(File current, String name) {
return new File(current, name).isDirectory();
}
});
for (int i = 0; i < objects.length; i++) {
boolean last = ((i + 1) == objects.length);
// this means if the current folder will still need to print subfolders at this level, if yes, then we need to continue print |
hierarchyTree.add(i != objects.length - 1);
renderFolder(objects[i], level + 1, sb, last, hierarchyTree);
// pop the last value as we return from a lower level to a higher level
hierarchyTree.remove(hierarchyTree.size() - 1);
}
return sb;
}
private static StringBuilder indent(StringBuilder sb, int level, boolean isLast, List<Boolean> hierarchyTree) {
String indentContent = "\u2502 ";
for (int i = 0; i < hierarchyTree.size() - 1; ++i) {
// determines if we need to print | at this level to show the tree structure
// i.e. if this folder has a sibling foler that is going to be printed later
if (hierarchyTree.get(i)) {
sb.append(indentContent);
} else {
sb.append(" "); // otherwise print empty space
}
}
if (level > 0) {
sb.append(isLast
? "\u2514\u2500\u2500"
: "\u251c\u2500\u2500");
}
return sb;
}
示例结果:
example
├──a
├──b
│ └──b1
│ ├──b11
│ │ └──b111
│ └──b12
│ ├──b121
│ └──b122
│ └──b1221
└──c
答案 2 :(得分:0)
您必须保留信息是否项目是所有父级别的文件夹中的最后一项。也就是说,你应该使isLast
成为一个数组。
例如,当您尝试打印项b111
时,该列表应为[true, true, false, true]
。第一个条目告诉您是否要打印垂直线,最后一个条目告诉您打印角落还是T型交叉点。