我使用了cogroup函数并获得了以下RDD:
org.apache.spark.rdd.RDD[(Int, (Iterable[(Int, Long)], Iterable[(Int, Long)]))]
在地图操作之前,连接对象将如下所示:
RDD[(Int, (Iterable[(Int, Long)], Iterable[(Int, Long)]))]
(-2095842000,(CompactBuffer((1504999740,1430096464017), (613904354,1430211912709), (-1514234644,1430288363100), (-276850688,1430330412225)),CompactBuffer((-511732877,1428682217564), (1133633791,1428831320960), (1168566678,1428964645450), (-407341933,1429009306167), (-1996133514,1429016485487), (872888282,1429031501681), (-826902224,1429034491003), (818711584,1429111125268), (-1068875079,1429117498135), (301875333,1429121399450), (-1730846275,1429131773065), (1806256621,1429135583312))))
(352234000,(CompactBuffer((1350763226,1430006650167), (-330160951,1430320010314)),CompactBuffer((2113207721,1428994842593), (-483470471,1429324209560), (1803928603,1429426861915))))
现在我想做以下事情:
val globalBuffer = ListBuffer[Double]()
val joined = data1.cogroup(data2).map(x => {
val listA = x._2._1.toList
val listB = x._2._2.toList
for(tupleB <- listB) {
val localResults = ListBuffer[Double]()
val itemToTest = Set(tupleB._1)
val tempList = ListBuffer[(Int, Double)]()
for(tupleA <- listA) {
val tValue = someFunctionReturnDouble(tupleB._2, tupleA._2)
val i = (tupleA._1, tValue)
tempList += i
}
val sortList = tempList.sortWith(_._2 > _._2).slice(0,20).map(i => i._1)
val intersect = sortList.toSet.intersect(itemToTest)
if (intersect.size > 0)
localResults += 1.0
else localResults += 0.0
val normalized = sum(localResults.toList)/localResults.size
globalBuffer += normalized
}
})
//method sum
def sum(xs: List[Double]): Double = {//do the sum}
最后,我期待加入成为具有双值的列表。但当我看着它时,它就是单位。我也不会这样做Scala的做法。如何获得globalBuffer
作为最终结果。
答案 0 :(得分:1)
嗯,如果我正确理解你的代码,它可以从这些改进中受益:
val joined = data1.cogroup(data2).map(x => {
val listA = x._2._1.toList
val listB = x._2._2.toList
val localResults = listB.map {
case (intBValue, longBValue) =>
val itemToTest = intBValue // it's always one element
val tempList = listA.map {
case (intAValue, longAValue) =>
(intAValue, someFunctionReturnDouble(longBvalue, longAValue))
}
val sortList = tempList.sortWith(-_._2).slice(0,20).map(i => i._1)
if (sortList.toSet.contains(itemToTest)) { 1.0 } else {0.0}
// no real need to convert to a set for 20 elements, by the way
}
sum(localResults)/localResults.size
})
答案 1 :(得分:1)
RDDs
的转换不会修改globalBuffer
。 globalBuffer
的副本已发送并发送给每个工作人员,但对工作人员的这些副本的任何修改都不会修改驱动程序上存在的globalBuffer
(您在map
RDD
之外定义的一个。)这是我的工作(进行了一些额外的修改):
val joined = data1.cogroup(data2) map { x =>
val iterA = x._2._1
val iterB = x._2._2
var count, positiveCount = 0
val tempList = ListBuffer[(Int, Double)]()
for (tupleB <- iterB) {
tempList.clear
for(tupleA <- iterA) {
val tValue = someFunctionReturnDouble(tupleB._2, tupleA._2)
tempList += ((tupleA._1, tValue))
}
val sortList = tempList.sortWith(_._2 > _._2).iterator.take(20)
if (sortList.exists(_._1 == tupleB._1)) positiveCount += 1
count += 1
}
positiveCount.toDouble/count
}
此时,您可以使用joined.collect
获取比例的本地副本。