将Hive分区表存储为镶木地板时,计数器组太多

时间:2015-10-27 06:54:41

标签: hadoop hive parquet

我创建了一个以id为分区的表格示例,并以镶木地板格式存储。

create table sample(uuid String,date String,Name String,EmailID String,Comments String,CompanyName String,country String,url String,keyword String,source String)  PARTITIONED BY (id String) Stored as parquet;

然后我使用下面的命令

将值插入其中
INSERT INTO TABLE sample PARTITION (id) Select uuid,date,Name,EmailID,Comments,CompanyName,country,url,keyword,source,id from inter distribute by id;

此查询会导致以下问题

Error: java.lang.RuntimeException: Hive Runtime Error while closing operators: org.apache.hadoop.mapreduce.counters.LimitExceededException: Too many counter groups: 51 max=50 at org.apache.hadoop.hive.ql.exec.mr.ExecReducer.close(ExecReducer.java:295) at org.apache.hadoop.mapred.ReduceTask.runOldReducer(ReduceTask.java:453) at org.apache.hadoop.mapred.ReduceTask.run(ReduceTask.java:392) at org.apache.hadoop.mapred.YarnChild$2.run(YarnChild.java:168) at java.security.AccessController.doPrivileged(Native Method) at javax.security.auth.Subject.doAs(Subject.java:415) at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1613) at org.apache.hadoop.mapred.YarnChild.main(YarnChild.java:163) Caused by: org.apache.hadoop.mapreduce.counters.LimitExceededException: org.apache.hadoop.mapreduce.counters.LimitExceededException: Too many counter groups: 51 max=50 at org.apache.hadoop.mapreduce.counters.Limits.checkCounters(Limits.java:97) at org.apache.hadoop.mapreduce.counters.Limits.incrCounters(Limits.java:108) at org.apache.hadoop.mapreduce.counters.AbstractCounterGroup.addCounter(AbstractCounterGroup.java:78) at org.apache.hadoop.mapreduce.counters.AbstractCounterGroup.addCounterImpl(AbstractCounterGroup.java:95) at org.apache.hadoop.mapreduce.counters.AbstractCounterGroup.findCounterImpl(AbstractCounterGroup.java:123) at org.apache.hadoop.mapreduce.counters.AbstractCounterGroup.findCounter(AbstractCounterGroup.java:113) at org.apache.hadoop.mapreduce.counters.AbstractCounterGroup.findCounter(AbstractCounterGroup.java:130) at org.apache.hadoop.mapred.Counters$Group.findCounter(Counters.java:369) at org.apache.hadoop.mapred.Counters$Group.getCounterForName(Counters.java:314) at org.apache.hadoop.mapred.Counters.findCounter(Counters.java:479) at org.apache.hadoop.mapred.Counters.incrCounter(Counters.java:544) at org.apache.hadoop.mapred.Task$TaskReporter.incrCounter(Task.java:679) at org.apache.hadoop.hive.ql.exec.mr.ExecMapper$ReportStats.func(ExecMapper.java:261) at org.apache.hadoop.hive.ql.exec.Operator.preorderMap(Operator.java:850) at org.apache.hadoop.hive.ql.exec.Operator.preorderMap(Operator.java:853) at org.apache.hadoop.hive.ql.exec.mr.ExecReducer.close(ExecReducer.java:289) ... 7 more Caused by: org.apache.hadoop.mapreduce.counters.LimitExceededException: Too many counter groups: 51 max=50 at org.apache.hadoop.mapreduce.counters.Limits.checkGroups(Limits.java:118) at org.apache.hadoop.mapreduce.counters.AbstractCounters.getGroup(AbstractCounters.java:230) at org.apache.hadoop.mapred.Counters.getGroup(Counters.java:113) at org.apache.hadoop.mapred.Counters.findCounter(Counters.java:479) at org.apache.hadoop.mapred.Counters.incrCounter(Counters.java:544) at org.apache.hadoop.mapred.Task$TaskReporter.incrCounter(Task.java:679) at org.apache.hadoop.hive.ql.stats.CounterStatsPublisher.publishStat(CounterStatsPublisher.java:54) at org.apache.hadoop.hive.ql.exec.FileSinkOperator.publishStats(FileSinkOperator.java:1167) at org.apache.hadoop.hive.ql.exec.FileSinkOperator.closeOp(FileSinkOperator.java:1017) at org.apache.hadoop.hive.ql.exec.Operator.close(Operator.java:598) at org.apache.hadoop.hive.ql.exec.Operator.close(Operator.java:610) at org.apache.hadoop.hive.ql.exec.mr.ExecReducer.close(ExecReducer.java:287) ... 7 more Container killed by the ApplicationMaster. Container killed on request. Exit code is 137 Container exited with a non-zero exit code 137

注意 id列有100万个不同的值

有人帮我吗?

1 个答案:

答案 0 :(得分:1)

您应该扩展计数器限制,例如:

mapreduce.job.counters.limit=1000 
mapreduce.job.counters.max=1000 
mapreduce.job.counters.groups.max=500 
mapreduce.job.counters.group.name.max=1000 
mapreduce.job.counters.counter.name.max=500