NB
我正在尝试检测3个圆圈的交叉区域,以便以不同于非交叉区域的方式处理它。
此处的交叉区域不可见。到目前为止我能做的就是通过降低不透明度来显示它来得到这样的东西:
我正在寻找一种智能的方法来检测这三个圆圈的交叉区域。
修改
如果可以提供帮助,请参阅我的d3.js
代码:
// Code circle
svg.append("circle")
.attr("class","services_nodes")
.attr("cx",7*width/16)
.attr("cy",height/2)
.attr("r",height/4)
.attr('fill', "blue")
// Label code
svg.append("text")
.attr("class","label_services")
.attr("x", 7*width/16 - 21*width/265)
.attr("y",35*height/64)
.text("Code");
// Consulting
svg.append("circle")
.attr("class","services_nodes")
.attr("cx",9*width/16)
.attr("cy",height/2)
.attr('fill', "red")
.attr('r', height/4)
// Label Consulting
svg.append("text")
.attr("class","label_services")
.attr("x", 9*width/16)
.attr("y",35*height/64)
.text("Consulting");
// Support
svg.append("circle")
.attr("class","services_nodes")
.attr("cx",7*width/16 + height/8)
.attr("cy",height/2 - Math.sqrt(3)*height/8) // y +/- Math.sqrt(3)*r/2
.attr('fill', "green")
.attr('r',height/4)
// Label Support
svg.append("text")
.attr("class","label_services")
.attr("x", 7*width/16 + 3*height/64)
.attr("y",height/2 - Math.sqrt(3)*height/8 - 3*height/32)
.text("Support");
提前致谢!
答案 0 :(得分:11)
正如我在评论中所说,交叉区域只是从每个圆上的交叉点绘制的两个弧。借用here的交叉点代码。
var interPoints = intersection(x1, y1, r, x2, y2, r);
svg.append("g")
.append("path")
.attr("d", function() {
return "M" + interPoints[0] + "," + interPoints[2] + "A" + r + "," + r +
" 0 0,1 " + interPoints[1] + "," + interPoints[3]+ "A" + r + "," + r +
" 0 0,1 " + interPoints[0] + "," + interPoints[2];
})
.style('fill', 'red');
2个圈子的完整工作代码是:
<!DOCTYPE html>
<html>
<head>
<script data-require="d3@3.5.3" data-semver="3.5.3" src="//cdnjs.cloudflare.com/ajax/libs/d3/3.5.3/d3.js"></script>
</head>
<body>
<script>
var x1 = 100,
y1 = 100,
x2 = 150,
y2 = 150,
r = 70;
var svg = d3.select('body')
.append('svg')
.attr('width', 600)
.attr('height', 600);
svg.append('circle')
.attr('cx', x1)
.attr('cy', y1)
.attr('r', r)
.style('fill', 'steelblue');
svg.append('circle')
.attr('cx', x2)
.attr('cy', y2)
.attr('r', r)
.style('fill', 'orange');
var interPoints = intersection(x1, y1, r, x2, y2, r);
svg.append("g")
.append("path")
.attr("d", function() {
return "M" + interPoints[0] + "," + interPoints[2] + "A" + r + "," + r +
" 0 0,1 " + interPoints[1] + "," + interPoints[3]+ "A" + r + "," + r +
" 0 0,1 " + interPoints[0] + "," + interPoints[2];
})
.style('fill', 'red');
function intersection(x0, y0, r0, x1, y1, r1) {
var a, dx, dy, d, h, rx, ry;
var x2, y2;
/* dx and dy are the vertical and horizontal distances between
* the circle centers.
*/
dx = x1 - x0;
dy = y1 - y0;
/* Determine the straight-line distance between the centers. */
d = Math.sqrt((dy * dy) + (dx * dx));
/* Check for solvability. */
if (d > (r0 + r1)) {
/* no solution. circles do not intersect. */
return false;
}
if (d < Math.abs(r0 - r1)) {
/* no solution. one circle is contained in the other */
return false;
}
/* 'point 2' is the point where the line through the circle
* intersection points crosses the line between the circle
* centers.
*/
/* Determine the distance from point 0 to point 2. */
a = ((r0 * r0) - (r1 * r1) + (d * d)) / (2.0 * d);
/* Determine the coordinates of point 2. */
x2 = x0 + (dx * a / d);
y2 = y0 + (dy * a / d);
/* Determine the distance from point 2 to either of the
* intersection points.
*/
h = Math.sqrt((r0 * r0) - (a * a));
/* Now determine the offsets of the intersection points from
* point 2.
*/
rx = -dy * (h / d);
ry = dx * (h / d);
/* Determine the absolute intersection points. */
var xi = x2 + rx;
var xi_prime = x2 - rx;
var yi = y2 + ry;
var yi_prime = y2 - ry;
return [xi, xi_prime, yi, yi_prime];
}
</script>
</body>
</html>
&#13;
在此之后,3个圆圈的交点变为:
<!DOCTYPE html>
<html>
<head>
<script data-require="d3@3.5.3" data-semver="3.5.3" src="//cdnjs.cloudflare.com/ajax/libs/d3/3.5.3/d3.js"></script>
</head>
<body>
<script>
var x1 = 150,
y1 = 100,
x2 = 200,
y2 = 150,
x3 = 100,
y3 = 150,
r = 70;
var svg = d3.select('body')
.append('svg')
.attr('width', 600)
.attr('height', 600);
svg.append('circle')
.attr('cx', x1)
.attr('cy', y1)
.attr('r', r)
.style('fill', 'steelblue');
svg.append('circle')
.attr('cx', x2)
.attr('cy', y2)
.attr('r', r)
.style('fill', 'orange');
svg.append('circle')
.attr('cx', x3)
.attr('cy', y3)
.attr('r', r)
.style('fill', 'green');
var interPoints1 = intersection(x1, y1, r, x2, y2, r);
var interPoints2 = intersection(x2, y2, r, x3, y3, r);
var interPoints3 = intersection(x1, y1, r, x3, y3, r);
svg.append("g")
.append("path")
.attr("d", function() {
return "M" + interPoints3[1] + "," + interPoints3[3] + "A" + r + "," + r +
" 0 0,1 " + interPoints1[0] + "," + interPoints1[2] + "A" + r + "," + r +
" 0 0,1 " + interPoints2[0] + "," + interPoints2[2] + "A" + r + "," + r +
" 0 0,1 " + interPoints3[1] + "," + interPoints3[3];
})
.style('fill', 'red');
function intersection(x0, y0, r0, x1, y1, r1) {
var a, dx, dy, d, h, rx, ry;
var x2, y2;
/* dx and dy are the vertical and horizontal distances between
* the circle centers.
*/
dx = x1 - x0;
dy = y1 - y0;
/* Determine the straight-line distance between the centers. */
d = Math.sqrt((dy * dy) + (dx * dx));
/* Check for solvability. */
if (d > (r0 + r1)) {
/* no solution. circles do not intersect. */
return false;
}
if (d < Math.abs(r0 - r1)) {
/* no solution. one circle is contained in the other */
return false;
}
/* 'point 2' is the point where the line through the circle
* intersection points crosses the line between the circle
* centers.
*/
/* Determine the distance from point 0 to point 2. */
a = ((r0 * r0) - (r1 * r1) + (d * d)) / (2.0 * d);
/* Determine the coordinates of point 2. */
x2 = x0 + (dx * a / d);
y2 = y0 + (dy * a / d);
/* Determine the distance from point 2 to either of the
* intersection points.
*/
h = Math.sqrt((r0 * r0) - (a * a));
/* Now determine the offsets of the intersection points from
* point 2.
*/
rx = -dy * (h / d);
ry = dx * (h / d);
/* Determine the absolute intersection points. */
var xi = x2 + rx;
var xi_prime = x2 - rx;
var yi = y2 + ry;
var yi_prime = y2 - ry;
return [xi, xi_prime, yi, yi_prime];
}
</script>
</body>
</html>
&#13;