我想在直方图中添加密度图。我对pdf功能有所了解,但我感到困惑,其他类似的问题也无济于事。
from scipy.stats import *
from numpy import*
from matplotlib.pyplot import*
from random import*
nums = []
N = 100
for i in range(N):
a = randint(0,9)
nums.append(a)
bars= [0,1,2,3,4,5,6,7,8,9]
alpha, loc, beta=5, 100, 22
hist(nums,normed= True,bins = bars)
show()
我正在寻找类似的东西
答案 0 :(得分:8)
from scipy import stats
import numpy as np
import matplotlib.pyplot as plt
np.random.seed(41)
N = 100
x = np.random.randint(0, 9, N)
bins = np.arange(10)
kde = stats.gaussian_kde(x)
xx = np.linspace(0, 9, 1000)
plt, ax = plt.subplots(figsize=(8,6))
ax.hist(x, normed=True, bins=bins, alpha=0.3)
ax.plot(xx, kde(xx))
答案 1 :(得分:1)
这是使用 seaborn
0.11.1 和 pandas
1.1.5 的解决方案:
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import numpy as np
N = 100
nums = [np.random.randint(i-i, 9) for i in range(N)]
df = pd.DataFrame(nums, columns=["value"])
fig, ax1 = plt.subplots()
sns.kdeplot(data=df, x="value", ax=ax1)
ax1.set_xlim((df["value"].min(), df["value"].max()))
ax2 = ax1.twinx()
sns.histplot(data=df, x="value", discrete=True, ax=ax2)
请注意我如何使用 numpy
生成随机值,因为我需要实际值,而不是生成器。最后一行中的 discrete=True
确保刻度居中。