我想使用Python将本地文件并行复制到多个远程主机。我正试图用asyncio
和Paramiko这样做,因为我已经在我的程序中将这些库用于其他目的。
我正在使用BaseEventLoop.run_in_executor()
和默认ThreadPoolExecutor
,它实际上是旧threading
库的新界面,以及Paramiko的SFTP功能来进行复制。
以下是如何使用的简化示例。
import sys
import asyncio
import paramiko
import functools
def copy_file_node(
*,
user: str,
host: str,
identity_file: str,
local_path: str,
remote_path: str):
ssh_client = paramiko.client.SSHClient()
ssh_client.load_system_host_keys()
ssh_client.set_missing_host_key_policy(paramiko.client.AutoAddPolicy())
ssh_client.connect(
username=user,
hostname=host,
key_filename=identity_file,
timeout=3)
with ssh_client:
with ssh_client.open_sftp() as sftp:
print("[{h}] Copying file...".format(h=host))
sftp.put(localpath=local_path, remotepath=remote_path)
print("[{h}] Copy complete.".format(h=host))
loop = asyncio.get_event_loop()
tasks = []
# NOTE: You'll have to update the values being passed in to
# `functools.partial(copy_file_node, ...)`
# to get this working on on your machine.
for host in ['10.0.0.1', '10.0.0.2']:
task = loop.run_in_executor(
None,
functools.partial(
copy_file_node,
user='user',
host=host,
identity_file='/path/to/identity_file',
local_path='/path/to/local/file',
remote_path='/path/to/remote/file'))
tasks.append(task)
try:
loop.run_until_complete(asyncio.gather(*tasks))
except Exception as e:
print("At least one node raised an error:", e, file=sys.stderr)
sys.exit(1)
loop.close()
我看到的问题是文件被串行复制到主机而不是并行复制。因此,如果单个主机的副本需要5秒钟,则两个主机需要10秒钟,依此类推。
我尝试了各种其他方法,包括放弃SFTP并通过exec_command()
将文件传输到每个远程主机上的dd
,但副本总是连续发生。
我可能在这里误解了一些基本想法。什么阻止不同的线程并行复制文件?
从我的测试来看,似乎持久性发生在远程写入,而不是读取本地文件。但是为什么会这样,因为我们正在尝试针对独立的远程主机进行网络I / O?
答案 0 :(得分:3)
我不确定这是接近它的最佳方式,但它适用于我
public class MainActivity extends AppCompatActivity{
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_profile);
Toolbar toolBar = (Toolbar) findViewById(R.id.app_bar);
setSupportActionBar(toolBar);
getSupportActionBar().setDisplayHomeAsUpEnabled(true);
NaviagtionFragment nav_frg = (NaviagtionFragment) getSupportFragmentManager().findFragmentById(R.id.navigation_drawer);
nav_frg.setUp((DrawerLayout) findViewById(R.id.drawer_layout), toolBar);
}
@Override
public boolean onCreateOptionsMenu(Menu menu) {
// Inflate the menu; this adds items to the action bar if it is present.
getMenuInflater().inflate(R.menu.menu_profile, menu);
return true;
}
@Override
public boolean onOptionsItemSelected(MenuItem item) {
// Handle action bar item clicks here. The action bar will
// automatically handle clicks on the Home/Up button, so long
// as you specify a parent activity in AndroidManifest.xml.
int id = item.getItemId();
//noinspection SimplifiableIfStatement
if (id == R.id.action_settings) {
return true;
}
return super.onOptionsItemSelected(item);
}}
基于评论,添加了一个日期戳并捕获了多处理的输出并得到了这个:
#start
from multiprocessing import Process
#omitted
tasks = []
for host in hosts:
p = Process(
None,
functools.partial(
copy_file_node,
user=user,
host=host,
identity_file=identity_file,
local_path=local_path,
remote_path=remote_path))
tasks.append(p)
[t.start() for t in tasks]
[t.join() for t in tasks]
答案 1 :(得分:2)
您使用asyncio没有任何问题。
为了证明这一点,让我们试试你的脚本的简化版本 - 没有paramiko,只有纯Python。
import asyncio, functools, sys, time
START_TIME = time.monotonic()
def log(msg):
print('{:>7.3f} {}'.format(time.monotonic() - START_TIME, msg))
def dummy(thread_id):
log('Thread {} started'.format(thread_id))
time.sleep(1)
log('Thread {} finished'.format(thread_id))
loop = asyncio.get_event_loop()
tasks = []
for i in range(0, int(sys.argv[1])):
task = loop.run_in_executor(None, functools.partial(dummy, thread_id=i))
tasks.append(task)
loop.run_until_complete(asyncio.gather(*tasks))
loop.close()
使用两个线程,将打印:
$ python3 async.py 2
0.001 Thread 0 started
0.002 Thread 1 started <-- 2 tasks are executed concurrently
1.003 Thread 0 finished
1.003 Thread 1 finished <-- Total time is 1 second
此并发最多可扩展到5个线程:
$ python3 async.py 5
0.001 Thread 0 started
...
0.003 Thread 4 started <-- 5 tasks are executed concurrently
1.002 Thread 0 finished
...
1.005 Thread 4 finished <-- Total time is still 1 second
如果我们再添加一个线程,我们就会达到线程池限制:
$ python3 async.py 6
0.001 Thread 0 started
0.001 Thread 1 started
0.002 Thread 2 started
0.003 Thread 3 started
0.003 Thread 4 started <-- 5 tasks are executed concurrently
1.002 Thread 0 finished
1.003 Thread 5 started <-- 6th task is executed after 1 second
1.003 Thread 1 finished
1.004 Thread 2 finished
1.004 Thread 3 finished
1.004 Thread 4 finished <-- 5 task are completed after 1 second
2.005 Thread 5 finished <-- 6th task is completed after 2 seconds
一切都按预期进行,每5件物品的总时间增加1秒。魔术数字5记录在ThreadPoolExecutor docs:
中在版本3.5中更改:如果 max_workers 为
None
或未给出,则默认为计算机上的处理器数量乘以{{ 1}},假设ThreadPoolExecutor经常用于重叠I / O而不是CPU工作,并且工作者数量应该高于ProcessPoolExecutor的工作者数量。
第三方库如何阻止我的ThreadPoolExecutor?
Library使用某种全局锁。这意味着库不支持多线程。尝试使用ProcessPoolExecutor,但要小心:库可能包含其他反模式,例如使用相同的硬编码临时文件名。
函数执行很长时间并且不释放GIL。它可能表示C扩展代码中存在错误,但持有GIL的最常见原因是进行一些CPU密集型计算。同样,您可以尝试使用ProcessPoolExecutor,因为它不受GIL的影响。
对于像paramiko这样的库,预计不会发生这些。
第三方库如何阻止我的ProcessPoolExecutor?
通常不能。您的任务在不同的进程中执行。如果您发现ProcessPoolExecutor中的两个任务花费了两倍的时间,则怀疑资源瓶颈(例如占用100%的网络带宽)。