熊猫:具有可变权重的指数衰减和

时间:2015-10-23 03:38:07

标签: python pandas exponential

与此问题Exponential Decay on Python Pandas DataFrame类似,我想快速计算数据框中某些列的指数衰减和。但是,数据帧中的行在时间上不是均匀间隔的。因此,在exponential_sum[i] = column_to_sum[i] + np.exp(-const*(time[i]-time[i-1])) * exponential_sum[i-1]时,权重np.exp(...)没有分解,对我来说如何改变这个问题并且仍然利用pandas / numpy矢量化并不明显。这个问题是否有熊猫矢量化解决方案?

为了说明所需的计算,下面是使用衰减常数1存储在A中的指数移动总和为Sum的示例帧:

    time  A       Sum
0   1.00  1  1.000000
1   2.10  3  3.332871
2   2.13 -1  2.234370
3   3.70  7  7.464850
4  10.00  2  2.013708
5  10.20  1  2.648684

2 个答案:

答案 0 :(得分:4)

这个问题比最初出现的问题更复杂。我最终使用numba的jit编译生成器函数来计算指数和。我的最终结果是在我的计算机上计算出一秒钟内500万行的指数总和,希望它能够快速满足您的需求。

# Initial dataframe.
df = pd.DataFrame({'time': [1, 2.1, 2.13, 3.7, 10, 10.2], 
                   'A': [1, 3, -1, 7, 2, 1]})

# Initial decay parameter.
decay_constant = 1

我们可以将衰减权重定义为exp(-time_delta * decay_constant),并将其初始值设置为1:

df['weight'] = np.exp(-df.time.diff() * decay_constant)
df.weight.iat[0] = 1

>>> df
   A   time    weight
0  1   1.00  1.000000
1  3   2.10  0.332871
2 -1   2.13  0.970446
3  7   3.70  0.208045
4  2  10.00  0.001836
5  1  10.20  0.818731

现在我们将使用numba中的jit来优化计算指数和的生成器函数:

from numba import jit

@jit(nopython=True)
def exponential_sum(A, k):
    total = A[0]
    yield total
    for i in xrange(1, len(A)):  # Use range in Python 3.
        total = total * k[i] + A[i]
        yield total

我们将使用生成器将值添加到数据帧:

df['expSum'] = list(exponential_sum(df.A.values, df.weight.values))

产生所需的输出:

>>> df
   A   time    weight    expSum
0  1   1.00  1.000000  1.000000
1  3   2.10  0.332871  3.332871
2 -1   2.13  0.970446  2.234370
3  7   3.70  0.208045  7.464850
4  2  10.00  0.001836  2.013708
5  1  10.20  0.818731  2.648684

所以让我们扩展到500万行并检查性能:

df = pd.DataFrame({'time': np.random.rand(5e6).cumsum(), 'A': np.random.randint(1, 10, 5e6)})
df['weight'] = np.exp(-df.time.diff() * decay_constant)
df.weight.iat[0] = 1

%%timeit -n 10 
df['expSum'] = list(exponential_sum(df.A.values, df.weight.values))
10 loops, best of 3: 726 ms per loop

答案 1 :(得分:0)

扩展您关联的answer,我想出了以下方法。

首先,请注意:

exponential_sum[i] = column_to_sum[i] + 
    np.exp(-const*(time[i]-time[i-1])) * column_to_sum[i-1] + 
    np.exp(-const*(time[i]-time[i-2])) * column_to_sum[i-2] + ...

所以要做的主要改变是生成权重空间以匹配上面的公式。我继续这样做:

time = pd.Series(np.random.rand(10)).cumsum()
weightspace = np.empty((10,10))
for i in range(len(time)):
    weightspace[i] = time - time[i]
weightspace = np.exp(weightspace)

不要担心矩阵的左下角三角形,它不会被使用。顺便说一句,必须有一种方法可以在没有循环的情况下生成权重空间。

然后在滚动函数中从权重空间中选择权重的方式稍有改变:

def rollingsum(array):
    weights = weightspace[len(array)-1][:len(array)]
    # Convolve the array and the weights to obtain the result
    a = np.dot(array, weights).sum()
    return a

按预期工作:

dataset = pd.DataFrame(np.random.rand(10,3), columns=["A", "B","C"])
a = pd.expanding_apply(dataset, rollingsum)