使用tidyr

时间:2015-10-23 01:14:20

标签: r dplyr tidyr

我正在处理数据框data,其结构与下面的数据类似。

  Gender   Age         Number
1 Female 55-59 years       5
2 Female   65+ years       10
3   Male 25-29 years       4
4   Male 40-44 years       3
5   Male 50-54 years       1

我正在尝试使用tidyr重塑数据(迄今为止失败),以便Number列的每个值都在其自己的行上。我正在寻找的输出应该类似于以下内容:

  Gender   Age
1 Female 55-59 years  
2 Female 55-59 years
3 Female 55-59 years
4 Female 55-59 years
5 Female 55-59 years 
6 Female   65+ years
7 Female   65+ years
8 Female   65+ years
9 Female   65+ years
10 Female   65+ years
11 Female   65+ years
12 Female   65+ years
13 Female   65+ years
14 Female   65+ years
15 Female   65+ years
16 Male 25-29 years
17 Male 25-29 years
18 Male 25-29 years
19 Male 25-29 years
20 Male 40-44 years
21 Male 40-44 years
22 Male 40-44 years
23 Male 50-54 years

我尝试使用聚集/传播功能的各种组合,而不是远远接近成功。我很确定这在tidyr中是可能的!

我知道有很多其他软件包/功能可以用来实现相同的结果,但我非常渴望得到一个tidyr解决方案,所以我可以将它包含在更大的dplyr / tidyr管道中。

非常感谢任何援助方面的帮助。

dat <- structure(list(Gender = structure(c(3L, 3L, 1L, 2L, 1L), .Label = c("   Male", 
    " Male", "Female"), class = "factor"), Age = structure(c(5L, 
    1L, 2L, 3L, 4L), .Label = c("65+ years", "25-29 years", "40-44 years", 
    "50-54 years", "55-59 years"), class = "factor"), Number = c(5L, 
    10L, 4L, 3L, 1L)), .Names = c("Gender", "Age", "Number"), class = "data.frame", row.names = c(NA, 
    -5L))

3 个答案:

答案 0 :(得分:5)

这也不是使用tidyr,但我认为这很自然:

dat %>% slice(rep(row_number(), Number)) %>% select(-Number)

    Gender         Age
1   Female 55-59 years
2   Female 55-59 years
3   Female 55-59 years
4   Female 55-59 years
5   Female 55-59 years
6   Female   65+ years
7   Female   65+ years
8   Female   65+ years
9   Female   65+ years
10  Female   65+ years
11  Female   65+ years
12  Female   65+ years
13  Female   65+ years
14  Female   65+ years
15  Female   65+ years
16    Male 25-29 years
17    Male 25-29 years
18    Male 25-29 years
19    Male 25-29 years
20    Male 40-44 years
21    Male 40-44 years
22    Male 40-44 years
23    Male 50-54 years

正如@bramtayl建议的那样,人们可以(可以说)用

来提高可读性
dat %>% slice(row_number() %>% rep(Number)) %>% select(-Number)

答案 1 :(得分:4)

不是 tidyr ,但非常快速有效:

dat2 <- dat[rep(1:nrow(dat), dat[["Number"]]), 1:2]
rownames(dat2) <- NULL

##     Gender          Age
## 1   Female  55-59 years
## 2   Female  55-59 years
## 3   Female  55-59 years
## 4   Female  55-59 years
## 5   Female  55-59 years
## 6   Female    65+ years
## 7   Female    65+ years
## 8   Female    65+ years
## 9   Female    65+ years
## 10  Female    65+ years
## 11  Female    65+ years
## 12  Female    65+ years
## 13  Female    65+ years
## 14  Female    65+ years
## 15  Female    65+ years
## 16    Male  25-29 years
## 17    Male  25-29 years
## 18    Male  25-29 years
## 19    Male  25-29 years
## 20    Male  40-44 years
## 21    Male  40-44 years
## 22    Male  40-44 years
## 23    Male  50-54 years

答案 2 :(得分:2)

我们可以使用tidyr/dplyr执行此操作。将值更改为序列list后,将“数字”转换为unnest列,并使用select从输出中删除“数字”列。

library(dplyr)
library(tidyr)
dat1 <- dat %>% 
          mutate(Number= lapply(Number, seq)) %>%
          unnest(Number) %>% 
          select(-Number)

请注意,输出将是tbl_df,当我们使用dplyr函数执行其他操作时,这将非常有用。

str(dat1)
# Classes ‘tbl_df’, ‘tbl’ and 'data.frame':       23 obs. of  2 variables:
#  $ Gender: Factor w/ 3 levels "   Male"," Male",..: 3 3 3 3 3 3 3 3 3 3 ...
#  $ Age   : Factor w/ 5 levels "65+ years","25-29 years",..: 5 5 5 5 5 1 1 1 1 1 ...

dat1 %>%
     as.data.frame()
#   Gender         Age
#1   Female 55-59 years
#2   Female 55-59 years
#3   Female 55-59 years
#4   Female 55-59 years
#5   Female 55-59 years
#6   Female   65+ years
#7   Female   65+ years
#8   Female   65+ years
#9   Female   65+ years
#10  Female   65+ years
#11  Female   65+ years
#12  Female   65+ years
#13  Female   65+ years
#14  Female   65+ years
#15  Female   65+ years
#16    Male 25-29 years
#17    Male 25-29 years
#18    Male 25-29 years
#19    Male 25-29 years
#20    Male 40-44 years
#21    Male 40-44 years
#22    Male 40-44 years
#23    Male 50-54 years