我希望通过 dplyr :: mutate_each 对所有列应用转换,例如
library(dplyr)
mult <- function(x,m) return(x*m)
mtcars %>% mutate_each(funs(mult(.,2))) # Multiply all columns by a factor of two
但是,转换应具有取决于列名称的参数。因此,列名应作为附加参数传递给函数
named.mult <- function(x,colname) return(x*param.A[[colname]])
示例:将每列乘以不同的因子:
param.A <- c()
param.A[names(mtcars)] <- seq(length(names(mtcars)))
param.A
# mpg cyl disp hp drat wt qsec vs am gear carb
# 1 2 3 4 5 6 7 8 9 10 11
由于在 mutate_each 期间列名丢失,我目前通过将带有延迟评估的列表传递给 mutate _ (SE版本)来解决此问题:
library(lazyeval)
named.mutate <- function(fun, cols) sapply(cols, function(n) interp(~fun(col, n), fun=fun, col=as.name(n)))
mtcars %>% mutate_(.dots=named.mutate(named.mult, names(.)))
Works,但是有一些特殊的变量,比如 .name ,它包含。的列名,用于每个colwise执行吗?所以我可以做类似
的事情mtcars %>% mutate_each(funs(named.mult(.,.name)))
答案 0 :(得分:0)
我建议采取不同的方法。 mutate_each
与dplyr::mutate
和tidyr::gather
的组合可以实现相同的结果,而不是tidyr::spread
。
例如:
library(dplyr)
library(tidyr)
data(mtcars)
# Multiple each column by a different interger
mtcars %>%
dplyr::tbl_df() %>%
dplyr::mutate(make_and_model = rownames(mtcars)) %>%
tidyr::gather(key, value, -make_and_model) %>%
dplyr::mutate(m = as.integer(factor(key)), # a multiplication factor dependent on column name
value = value * m) %>%
dplyr::select(-m) %>%
tidyr::spread(key, value)
# compare to the original data
mtcars[order(rownames(mtcars)), order(names(mtcars))]
# the muliplicative values used.
mtcars %>%
tidyr::gather() %>%
dplyr::mutate(m = as.integer(factor(key))) %>%
dplyr::select(-value) %>%
dplyr::distinct()