MemSQL Spark连接器将Spark中的空值插入到MemSQL中

时间:2015-10-20 22:50:26

标签: memsql

我有这个程序正在读取镶木地板文件并将其写入MemSQL表。我可以正确确认Spark读取文件

df.printSchema()
df.show(5)

正确打印架构和数据。

当我查询表时,我得到行的所有NULL值。表中的所有内容都为NULL。我不确定这里出了什么问题。

将镶木地板文件写入memsql的代码

package com.rb.scala

    import com.memsql.spark.context.MemSQLContext
    import java.sql.{ DriverManager, ResultSet, Connection, Timestamp }

    import org.apache.spark._
    import org.apache.spark.sql._
    import org.apache.spark.sql.types._
    import org.apache.spark.sql.catalyst.expressions.RowOrdering

    import com.memsql.spark.connector._
    import com.memsql.spark.connector.OnDupKeyBehavior._
    import com.memsql.spark.connector.dataframe._
    import com.memsql.spark.connector.rdd._

    import scala.util.control.NonFatal
    import org.apache.log4j.Logger
    object MemSQLWriter {

    def main(arg: Array[String]) {

    var logger = Logger.getLogger(this.getClass())

    if (arg.length < 1) {
      logger.error("=> wrong parameters number")
      System.err.println("Usage: MainExample <directory containing the source files to be loaded to database > ")
      System.exit(1)
    }

    val jobName = "MemSQLWriter"
    val conf = new SparkConf().setAppName(jobName)
    val sc = new SparkContext(conf)
    val sqlContext = new SQLContext(sc)
    val pathToFiles = arg(0)
    logger.info("=> jobName \"" + jobName + "\"")
    logger.info("=> pathToFiles \"" + pathToFiles + "\"")
    val dbHost = "xx.xx.xx.xx"
    val dbPort = 3306
    val dbName = "memsqlrdd_db"
    val user = "root"
    val password = ""
    val tableName = "target_table"
    val dbAddress = "jdbc:mysql://" + dbHost + ":" + dbPort
    val df = sqlContext.read.parquet("/projects/example/data/")
    val conn = DriverManager.getConnection(dbAddress, user, password)
    val stmt = conn.createStatement
    stmt.execute("CREATE DATABASE IF NOT EXISTS " + dbName)
    stmt.execute("USE " + dbName)
    stmt.execute("DROP TABLE IF EXISTS " + tableName)
    df.printSchema()
    df.show(5)
    var columnArr  = df.columns
    var createQuery:String = " CREATE TABLE "+tableName+" ("
    logger.info("=> no of columns : "+columnArr.length)
    for(column <- columnArr){
       createQuery += column
       createQuery += " VARCHAR(100),"
    }
    createQuery += " SHARD KEY ("+columnArr(0)+"))"
    logger.info("=> create table query "+createQuery)
    stmt.execute(createQuery)

    df.select().saveToMemSQL(dbName, tableName, dbHost, dbPort, user, password, upsertBatchSize = 1000, useKeylessShardedOptimization = true)
    stmt.close()
  }
}

1 个答案:

答案 0 :(得分:2)

您正在创建一个带有SHARD键的表,然后设置useKeylessShardingOptimization = true,这将给出未定义的行为。把它设置为假,它应该是好的。

另外,我不确定df.select().saveToMemSQL...是做什么的。试试df.saveToMemSQL ...

验证时,请执行SELECT * FROM table WHERE col IS NOT NULL LIMIT 10之类的操作,看看您是否确实拥有所有空值。

PS:还有df.createMemSQLTableAs,可以做你想要的事情。