我有100个包含系统调用跟踪的文件。每个文件如下所示:
setpgrp ioctl setpgrp ioctl ioctl ....
我正在尝试加载这些文件并对它们执行kmean计算,以根据相似性对它们进行聚类。根据sklearn网页上的tutorial,我写了以下内容:
from sklearn.decomposition import TruncatedSVD
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import Normalizer
from sklearn import metrics
from sklearn.datasets import load_files
from sklearn.cluster import KMeans, MiniBatchKMeans
import numpy as np
# parse commandline arguments
op = OptionParser()
op.add_option("--lsa",
dest="n_components", type="int",
help="Preprocess documents with latent semantic analysis.")
op.add_option("--no-minibatch",
action="store_false", dest="minibatch", default=True,
help="Use ordinary k-means algorithm (in batch mode).")
op.add_option("--use-idf",
action="store_false", dest="use_idf", default=True,
help="Disable Inverse Document Frequency feature weighting.")
op.add_option("--n-features", type=int, default=10000,
help="Maximum number of features (dimensions)"
" to extract from text.")
op.add_option("--verbose",
action="store_true", dest="verbose", default=False,
help="Print progress reports inside k-means algorithm.")
print(__doc__)
op.print_help()
(opts, args) = op.parse_args()
if len(args) > 0:
op.error("this script takes no arguments.")
sys.exit(1)
print("Loading training data:")
trainingdata = load_files('C:\data\Training data')
print("%d documents" % len(trainingdata.data))
print()
print("Extracting features from the training trainingdata using a sparse vectorizer")
if opts.use_idf:
vectorizer = TfidfVectorizer(input="file",min_df=1)
X = vectorizer.fit_transform(trainingdata.data)
print("n_samples: %d, n_features: %d" % X.shape)
print()
if opts.n_components:
print("Performing dimensionality reduction using LSA")
# Vectorizer results are normalized, which makes KMeans behave as
# spherical k-means for better results. Since LSA/SVD results are
# not normalized, we have to redo the normalization.
svd = TruncatedSVD(opts.n_components)
lsa = make_pipeline(svd, Normalizer(copy=False))
X = lsa.fit_transform(X)
explained_variance = svd.explained_variance_ratio_.sum()
print("Explained variance of the SVD step: {}%".format(
int(explained_variance * 100)))
print()
但是,当所有文件都可用时,似乎数据集目录中的所有文件都没有加载到内存中。执行程序时出现以下错误:
raise ValueError("empty vocabulary; perhaps the documents only"
ValueError: empty vocabulary; perhaps the documents only contain stop words
有谁能告诉我为什么没有加载数据集?我做错了什么?
答案 0 :(得分:1)
我终于设法加载文件了。在sklearn中使用Kmean的方法是对训练数据进行矢量化(使用tfidf或count_vectorizer),然后使用训练数据的矢量化来转换测试数据。完成后,您可以初始化Kmean参数,使用训练数据集向量来创建kmean集群。最后,您可以围绕训练数据质心对测试数据进行聚类。 以下代码执行上面解释的内容。
#Read the data in a directory:
def readfile(dataDir):
data_set = []
for file in os.listdir(dataDir):
trainingfiles = os.path.join(dataDir, file)
if os.path.isfile(trainingfiles):
data = open(trainingfiles, 'r')
dataread=str.decode(data.read())
data_set.append(dataread)
return data_set
#fitting tfidf transfrom for training data
tfidf_vectorizer_trainingset = tfidf_vectorizer.fit_transform(readfile(trainingdataDir)).toarray()
#transform the test set based on the training set
tfidf_vectorizer_testset = tfidf_vectorizer.transform(readfile(testingdataDir)).toarray()
# Kmean Clustering parameters
kmean_parameters = KMeans(n_clusters=number_of_clusters, init='k-means++', max_iter=100, n_init=1)
#Cluster the training data based on the parameters
KmeanAnalysis_training = kmean_parameters.fit(tfidf_vectorizer_trainingset)
#transform the test data based on the clustering of the training data
KmeanAnalysis_test = kmean_parameters.transform(tfidf_vectorizer_testset)