我正在努力提高以下流程的计算效率。我创建了使用数据进行审查的玩具示例。第一种方法在第二种方法的一半时间内运行。
如何改进第一种方法的运行时间?
SELECT * FROM (Select * FROM Table Where id <> 12) t WHERE phone = '123456' Or email = 'example@example.com'
我正在尝试为每个id计算1的第一个实例。
预期产出:
library(sqldf)
id = c(1,1,1,1,2,2,2,5,5,5,5,5,5)
qn = c(0,0,1,1,0,1,0,0,0,1,0,1,0)
d = data.frame(cbind(id,qn))
names(d) = c("id", "qn")
un = unique(d$id)
holder = matrix(0,length(un), 1)
counter = 0
x = proc.time()
for (i in un)
{
z = head(which(d[d$id == i,]$qn==1),1)
counter = counter + 1
holder[counter,] = z
}
proc.time() - x
f = sqldf("select id, count(qn) from d group by id", drv = 'SQLite')
f = cbind(f,holder)
#################################
un = unique(d$id)
holder = matrix(0,length(un), 1)
counter = 0
x = proc.time()
for (i in 1:length(un))
{
y = paste("select * from d where id = ", un[i])
y = sqldf(y, drv = 'SQLite')
y = min(which(y$qn==1))
counter = counter + 1
holder[counter,] = y
}
proc.time() - x
f = sqldf("select id, count(qn) from d group by id", drv = 'SQLite')
f = cbind(f,holder)
答案 0 :(得分:4)
您可以在sqldf
使用dplyr
library(dplyr)
d %>%
group_by(id) %>%
summarize(first=first(which(qn==1)))
答案 1 :(得分:4)
我们也可以使用data.table
library(data.table)
setDT(d)[, list(first= which.max(qn)) , id]
答案 2 :(得分:3)
1)在lapply中使用sqldf:
do.call(rbind,
lapply(split(d, id), function(i)
sqldf("SELECT id, min(rowid) AS first
FROM (SELECT rowid, *
FROM i) AS x
WHERE qn = 1"))
)
## id first
## 1 1 3
## 2 2 2
## 5 5 3
2)或者对于纯SQL解决方案,从每个组的qn = 1的第一个rowid中减去每个组中第一行的rowid并添加1:
sqldf("select id, min_row1 - min_row + 1 first
from (select id, min(rowid) min_row
from d
group by id)
join (select id, min(rowid) min_row1
from d where qn = 1
group by id) using (id)")
## id first
## 1 1 3
## 2 2 2
## 3 5 3
3)或者对于替代的纯SQL解决方案,在内部选择中的id内创建一个序列seq
,然后在id组中选择第一个qn = 1:< / p>
sqldf("select id, min(seq) first
from (select x.id, x.qn, count() seq
from d x
join d y on x.rowid >= y.rowid and x.id = y.id
group by x.rowid)
where qn = 1
group by id")
## id first
## 1 1 3
## 2 2 2
## 3 5 3