您好我对编程不是很熟悉,在研究我的任务时发现了Stackoverflow。我想在.csv文件上进行自然语言处理,该文件看起来像这样并且有大约15.000行
ID | Title | Body
----------------------------------------
1 | Who is Jack? | Jack is a teacher...
2 | Who is Sam? | Sam is a dog....
3 | Who is Sarah?| Sarah is a doctor...
4 | Who is Amy? | Amy is a wrestler...
我想阅读.csv文件并执行一些基本的NLP操作,并将结果写回新文件或同一文件中。经过一些研究python和nltk接缝成为我需要的技术。 (我希望是对的)。标记后我希望我的.csv文件看起来像这样
ID | Title | Body
-----------------------------------------------------------
1 | "Who" "is" "Jack" "?" | "Jack" "is" "a" "teacher"...
2 | "Who" "is" "Sam" "?" | "Sam" "is" "a" "dog"....
3 | "Who" "is" "Sarah" "?"| "Sarah" "is" "a" "doctor"...
4 | "Who" "is" "Amy" "?" | "Amy" "is" "a" "wrestler"...
经过一天的研究并将各个部分放在一起后,我取得的成就就像这样
ID | Title | Body
----------------------------------------------------------
1 | "Who" "is" "Jack" "?" | "Jack" "is" "a" "teacher"...
2 | "Who" "is" "Sam" "?" | "Jack" "is" "a" "teacher"...
3 | "Who" "is" "Sarah" "?"| "Jack" "is" "a" "teacher"...
4 | "Who" "is" "Amy" "?" | "Jack" "is" "a" "teacher"...
我的第一个想法是读取.csv中的特定单元格,执行操作并将其写回同一单元格。并且不知何故在所有行上自动执行此操作。显然,我设法读取一个单元格并将其标记化。但我无法在特定的细胞中写回来。而且我远离"自动对所有行进行操作"。如果可能的话,我将不胜感激。
我的代码:
import csv
from nltk.tokenize import word_tokenize
############Read CSV File######################
########## ID , Title, Body####################
line_number = 1 #line to read (need some kind of loop here)
column_number = 2 # column to read (need some kind of loop here)
with open('test10in.csv', 'rb') as f:
reader = csv.reader(f)
reader = list(reader)
text = reader[line_number][column_number]
stringtext = ''.join(text) #tokenizing just work on strings
tokenizedtext = (word_tokenize(stringtext))
print(tokenizedtext)
#############Write back in same cell in new CSV File######
with open('test11out.csv', 'wb') as g:
writer = csv.writer(g)
for row in reader:
row[2] = tokenizedtext
writer.writerow(row)
我希望我能正确地提出这个问题,有人可以帮助我。
答案 0 :(得分:2)
pandas库将使这一切变得更加容易。
pd.read_csv()将更容易处理输入,您可以使用pd.DataFrame.apply()将相同的函数应用于列
以下是您希望如何工作的关键部分的快速示例。在.applymap()方法中,您可以使用word_tokenize()替换我的lambda函数,以将其应用于所有元素。
In [58]: import pandas as pd
In [59]: pd.read_csv("test.csv")
Out[59]:
0 1
0 wrestler Amy dog is teacher dog dog is
1 is wrestler ? ? Sarah doctor teacher Jack
2 a ? Sam Sarah is dog Sam Sarah
3 Amy a a doctor Amy a Amy Jack
In [60]: df = pd.read_csv("test.csv")
In [61]: df.applymap(lambda x: x.split())
Out[61]:
0 1
0 [wrestler, Amy, dog, is] [teacher, dog, dog, is]
1 [is, wrestler, ?, ?] [Sarah, doctor, teacher, Jack]
2 [a, ?, Sam, Sarah] [is, dog, Sam, Sarah]
3 [Amy, a, a, doctor] [Amy, a, Amy, Jack]
另见:http://pandas.pydata.org/pandas-docs/stable/basics.html#row-or-column-wise-function-application
答案 1 :(得分:1)
首先需要解析文件,然后分别处理(标记化等)每个字段。
如果我们的文件看起来像你的样本,我不会称之为CSV。您可以使用csv
模块解析它,该模块专门用于读取各种CSV文件:将delimiter="|"
添加到csv.reader()
的参数中,以分隔您的行成细胞。 (并且不要以二进制模式打开文件。)但是您的文件很容易直接解析:
with open('test10in.csv', encoding="utf-8") as fp: # Or whatever encoding is right
content = fp.read()
lines = content.splitlines()
allrows = [ [ fld.strip() for fld in line.split("|") ] for line in lines ]
# Headers and data:
headers = allrows[0]
rows = allrows[2:]
然后,您可以使用nltk.word_tokenize()
对rows
的每个字段进行标记,然后从那里继续。