我有以下使用Python和OpenCV的代码。简而言之,我有一堆不同焦深的图像。代码在所有焦深(z)中的每个(x,y)位置处挑选出具有最大拉普拉斯响应拉普拉斯响应的像素,从而创建聚焦堆叠图像。函数get_fmap
创建一个二维数组,其中每个像素将包含具有最大日志响应的焦平面的编号。在以下代码中,注释掉的行是我当前的VIPS实现。它们在功能定义中看起来不兼容,因为它只是部分解决方案。
# from gi.repository import Vips
def get_log_kernel(siz, std):
x = y = np.linspace(-siz, siz, 2*siz+1)
x, y = np.meshgrid(x, y)
arg = -(x**2 + y**2) / (2*std**2)
h = np.exp(arg)
h[h < sys.float_info.epsilon * h.max()] = 0
h = h/h.sum() if h.sum() != 0 else h
h1 = h*(x**2 + y**2 - 2*std**2) / (std**4)
return h1 - h1.mean()
def get_fmap(img): # img is a 3-d numpy array.
log_response = np.zeros_like(img[:, :, 0], dtype='single')
fmap = np.zeros_like(img[:, :, 0], dtype='uint8')
log_kernel = get_log_kernel(11, 2)
# kernel = get_log_kernel(11, 2)
# kernel = [list(row) for row in kernel]
# kernel = Vips.Image.new_from_array(kernel)
# img = Vips.new_from_file("testimg.tif")
for ii in range(img.shape[2]):
# img_filtered = img.conv(kernel)
img_filtered = cv2.filter2D(img[:, :, ii].astype('single'), -1, log_kernel)
index = img_filtered > log_response
log_response[index] = img_filtered[index]
fmap[index] = ii
return fmap
然后fmap
将用于从不同焦平面中挑选像素以创建焦点堆叠图像
这是在非常大的图像上完成的,我觉得VIPS可能比OpenCV做得更好。但是,官方文档提供了有关其Python绑定的相当少的信息。根据我在互联网上可以找到的信息,我只能进行图像卷积工作(在我的情况下,它比OpenCV快一个数量级)。我想知道如何在VIPS中实现这一点,尤其是这些线路?
log_response = np.zeros_like(img[:, :, 0], dtype = 'single')
index = img_filtered > log_response
log_response[index] = im_filtered[index]
fmap[index] = ii
答案 0 :(得分:1)
fmap
和fmap
在问题代码中初始化为3D数组,而问题文本则指出输出log_response
是2D数组。所以,我假设将fmap
和log_response = np.zeros_like(img[:,:,0], dtype='single')
fmap = np.zeros_like(img[:,:,0], dtype='uint8')
初始化为2D数组,其形状与每个图像相同。因此,编辑将是 -
.argmax(2)
现在,回到问题的主题,您将逐个对每个图像执行2D过滤,并获得所有堆叠图像的过滤输出的最大索引。如果你不知道cv2.filter2D
的文档,它也可以在多维数组上使用,给我们一个多维数组作为输出。然后,在所有图像中获取最大索引就像fmap = cv2.filter2D(img,-1,log_kernel).argmax(2)
一样简单。因此,实施必须非常有效,而且很简单 -
select
sum(a.dubizzle) as dubizzle,
sum(b.JustRentals) as JustRentals,
sum(c.JustProperty) as JustProperty,
sum(d.propertyfinder) as propertyfinder
from
(
(
select count(id) as dubizzle
from crm_rentals
where portals_name like '%dubizzle%'
UNION
select count(id) as dubizzle
from crm_sales
where portals_name like '%dubizzle%'
) as a ,
(
select count(id) as JustRentals
from crm_rentals
where portals_name like '%JustRentals%'
UNION
select count(id) as JustRentals
from crm_sales
where portals_name like '%JustRentals%'
) as b,
(
select count(id) as JustProperty
from crm_rentals
where portals_name like '%JustProperty%'
UNION
select count(id) as JustProperty
from crm_sales
where portals_name like '%JustProperty%'
) as c ,
(
select count(id) as propertyfinder
from crm_rentals
where portals_name like '%propertyfinder%'
UNION
select count(id) as propertyfinder
from crm_rentals
where portals_name like '%propertyfinder%'
) as d
)
答案 1 :(得分:1)
在咨询Python VIPS manual和一些反复试验之后,我已经提出了自己的答案。我的numpy和OpenCV实现可以转换成这样的VIPS:
import pyvips
img = []
for ii in range(num_z_levels):
img.append(pyvips.Image.new_from_file("testimg_z" + str(ii) + ".tif")
def get_fmap(img)
log_kernel = get_log_kernel(11,2) # get_log_kernel is my own function, which generates a 2-d numpy array.
log_kernel = [list(row) for row in log_kernel] # pyvips.Image.new_from_array takes 1-d list array.
log_kernel = pyvips.Image.new_from_array(log_kernel) # Turn the kernel into Vips array so it can be used by Vips.
log_response = img[0].conv(log_kernel)
for ii in range(len(img)):
img_filtered = img[ii+1].conv(log_kernel)
log_response = (img_filtered > log_response).ifthenelse(img_filtered, log_response)
fmap = (img_filtered > log_response).ifthenelse(ii+1, 0)
通过ifthenelse
方法实现逻辑索引:
result_img = (test_condition).ifthenelse(value_if_true, value_if_false)
语法相当灵活。测试条件可以是相同大小的两个图像之间或图像与值之间的比较,例如, img1 > img2
或img > 5
。同样,value_if_true可以是单个值或Vips图像。