Spark Jobs的新功能我遇到了以下问题。
当我对任何新加入的数据帧运行计数时,作业会运行很长时间并将内存溢出到磁盘。这里有逻辑错误吗?
// pass spark configuration
val conf = new SparkConf()
.setMaster(threadMaster)
.setAppName(appName)
// Create a new spark context
val sc = new SparkContext(conf)
// Specify a SQL context and pass in the spark context we created
val sqlContext = new org.apache.spark.sql.SQLContext(sc)
// Create three dataframes for sent and clicked files. Mark them as raw, since they will be renamed
val dfSentRaw = sqlContext.read.parquet(inputPathSent)
val dfClickedRaw = sqlContext.read.parquet(inputPathClicked)
val dfFailedRaw = sqlContext.read.parquet(inputPathFailed)
// Rename the columns to avoid ambiguity when accessing the fields later
val dfSent = dfSentRaw.withColumnRenamed("customer_id", "sent__customer_id")
.withColumnRenamed("campaign_id", "sent__campaign_id")
.withColumnRenamed("ced_email", "sent__ced_email")
.withColumnRenamed("event_captured_dt", "sent__event_captured_dt")
.withColumnRenamed("riid", "sent__riid")
val dfClicked = dfClickedRaw.withColumnRenamed("customer_id", "clicked__customer_id")
.withColumnRenamed("event_captured_dt", "clicked__event_captured_dt")
val dfFailed = dfFailedRaw.withColumnRenamed("customer_id", "failed__customer_id")
// LEFT Join with CLICKED on two fields, customer_id and campaign_id
val dfSentClicked = dfSent.join(dfClicked, dfSent("sent__customer_id") === dfClicked("clicked__customer_id")
&& dfSent("sent__campaign_id") === dfClicked("campaign_id"), "left")
dfSentClicked.count() //THIS WILL NOT WORK
val dfJoined = dfSentClicked.join(dfFailed, dfSentClicked("sent__customer_id") === dfFailed("failed__customer_id")
&& dfSentClicked("sent__campaign_id") === dfFailed("campaign_id"), "left")
为什么不能再计算这两个/三个数据帧了?我是否通过重命名搞砸了一些索引?
谢谢!
答案 0 :(得分:1)
count
调用是此处Spark作业的唯一实际实现,因此它不是count
不是问题,而是为{{1}进行的随机播放就在它之前。您没有足够的内存来执行连接而不会溢出到磁盘。在洗牌中溢出磁盘是一种非常简单的方法,可以让您的Spark作业永远占用=)。
真正有助于防止溢出溢出的一件事是拥有更多分区。然后,在任何给定时间,通过随机播放的数据都会减少。您可以设置join
来控制Spark Sql在连接或聚合中使用的分区数。默认为200,因此您可以尝试更高的设置。 http://spark.apache.org/docs/latest/sql-programming-guide.html#other-configuration-options
您可以通过增加spark.sql.shuffle.partitions
(默认为0.4)和减少spark.shuffle.memoryFraction
(默认为0.6)来增加本地Spark分配的堆大小和/或增加可用于shuffle的内存部分。例如,当您进行spark.storage.memoryFraction
调用时,可以使用存储分数,而您可能不关心它。
如果您倾向于完全避免泄漏,可以通过将.cache
设置为spark.shuffle.spill
来关闭溢出。我相信如果你的内存耗尽而需要溢出而不是默默地使用,这将会引发异常,并且可以帮助你更快地配置你的内存分配。