我正在尝试kaggle挑战here,不幸的是我陷入了一个非常基本的步骤。我有限的python知识必须归咎于此。 我试图通过执行以下命令将datasets读入pandas数据帧:
test = pd.DataFrame.from_csv("C:/Name/DataMining/hillary/data/output/emails.csv")
问题是你发现的这个文件有超过300,000条记录,但我只阅读7945,21。
print (test.shape)
(7945, 21)
现在我已经仔细检查了文件,我找不到有关第7945行的任何特殊信息。任何指示为什么会发生这种情况。似乎非常普通的情况,我希望有些遇到过这个错误的人可以帮助我。
答案 0 :(得分:5)
我认为更好的是使用带有参数quoting=csv.QUOTE_NONE
和error_bad_lines=False
的函数read_csv。 link
import pandas as pd
import csv
test = pd.read_csv("output/Emails.csv", quoting=csv.QUOTE_NONE, error_bad_lines=False)
print (test.shape)
#(381422, 22)
但是会跳过一些数据(有问题)。
如果您想要跳过电子邮件正文数据,可以使用:
import pandas as pd
import csv
test = pd.read_csv("output/Emails.csv", quoting=csv.QUOTE_NONE, sep=',', error_bad_lines=False, header=None,
names=["Id","DocNumber","MetadataSubject","MetadataTo","MetadataFrom","SenderPersonId","MetadataDateSent","MetadataDateReleased","MetadataPdfLink","MetadataCaseNumber","MetadataDocumentClass","ExtractedSubject","ExtractedTo","ExtractedFrom","ExtractedCc","ExtractedDateSent","ExtractedCaseNumber","ExtractedDocNumber","ExtractedDateReleased","ExtractedReleaseInPartOrFull","ExtractedBodyText","RawText"])
print (test.shape)
#delete row with NaN in column MetadataFrom
test = test.dropna(subset=['MetadataFrom'])
#delete headers in data
test = test[test.MetadataFrom != 'MetadataFrom']