我们如何将具有多维度的数组复制到AleaGPU中的内核? 我们如何在内核中使用多维数组进行开发?
Malloc似乎不接受它?
double[,] inputs;
double[,] dInputs1 = Worker.Malloc(inputs); // I get an error here
var dOutputs1 = Worker.Malloc<double>(inputs1.Length)
Worker.Launch(SquareKernel, lp, dOutputs1.Ptr, dInputs1.Ptr, inputs.Length); //dInputs1.Ptr Make an error
[AOTCompile]
static void SquareKernel(deviceptr<double> outputs, deviceptr<double[,]> inputs, int n)
{
var start = blockIdx.x * blockDim.x + threadIdx.x;
var stride = gridDim.x * blockDim.x;
for (var i = start; i < n; i += stride)
{
outputs[i] = inputs[i,0] * inputs[i,0];
}
}
答案 0 :(得分:1)
Alea GPU版本直到2.2(现在最新)还不支持malloc array2d,所以你必须在内核中按行和列自己压缩索引。对于主机端,您可以使用一些扩展方法,使用一些CUDA驱动程序API P / Invoke(这些P / Invoke功能可从Alea.CUDA.dll获得)来将固定的.NET阵列传送到设备或从设备传送。
所以这是我写的快速工作:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Runtime.InteropServices;
using System.Text;
using Alea.CUDA;
using Alea.CUDA.IL;
using NUnit.Framework;
namespace ConsoleApplication1
{
static class Extension
{
public static DeviceMemory<T> Malloc<T>(this Worker worker, T[,] array2D)
{
var rows = array2D.GetLength(0);
var cols = array2D.GetLength(1);
var dmem = worker.Malloc<T>(rows*cols);
var handle = GCHandle.Alloc(array2D, GCHandleType.Pinned);
try
{
var hostPtr = handle.AddrOfPinnedObject();
var devicePtr = dmem.Handle;
// we now pinned .NET array, and need to copy them with CUDA Driver API
// to do so we need use worker.Eval to make sure the worker's context is
// pushed onto current thread.
worker.EvalAction(() =>
{
CUDAInterop.cuSafeCall(CUDAInterop.cuMemcpyHtoD(devicePtr, hostPtr,
new IntPtr(Intrinsic.__sizeof<T>()*rows*cols)));
});
}
finally
{
handle.Free();
}
return dmem;
}
public static DeviceMemory<T> Malloc<T>(this Worker worker, int rows, int cols)
{
return worker.Malloc<T>(rows*cols);
}
public static void Gather<T>(this DeviceMemory<T> dmem, T[,] array2D)
{
var rows = array2D.GetLength(0);
var cols = array2D.GetLength(1);
var handle = GCHandle.Alloc(array2D, GCHandleType.Pinned);
try
{
var hostPtr = handle.AddrOfPinnedObject();
var devicePtr = dmem.Handle;
// we now pinned .NET array, and need to copy them with CUDA Driver API
// to do so we need use worker.Eval to make sure the worker's context is
// pushed onto current thread.
dmem.Worker.EvalAction(() =>
{
CUDAInterop.cuSafeCall(CUDAInterop.cuMemcpyDtoH(hostPtr, devicePtr,
new IntPtr(Intrinsic.__sizeof<T>() * rows * cols)));
});
}
finally
{
handle.Free();
}
}
}
class Program
{
static int FlattenIndex(int row, int col, int cols)
{
return row*cols + col;
}
[AOTCompile]
static void Kernel(deviceptr<double> outputs, deviceptr<double> inputs, int rows, int cols)
{
// for simplicity, I do all things in one thread.
for (var row = 0; row < rows; row++)
{
for (var col = 0; col < cols; col++)
{
outputs[FlattenIndex(row, col, cols)] = inputs[FlattenIndex(row, col, cols)];
}
}
}
[Test]
public static void Test()
{
var worker = Worker.Default;
// make it small, for we only do it in one GPU thread.
const int rows = 10;
const int cols = 5;
var rng = new Random();
var inputs = new double[rows, cols];
for (var row = 0; row < rows; ++row)
{
for (var col = 0; col < cols; ++col)
{
inputs[row, col] = rng.Next(1, 100);
}
}
var dInputs = worker.Malloc(inputs);
var dOutputs = worker.Malloc<double>(rows, cols);
var lp = new LaunchParam(1, 1);
worker.Launch(Kernel, lp, dOutputs.Ptr, dInputs.Ptr, rows, cols);
var outputs = new double[rows, cols];
dOutputs.Gather(outputs);
Assert.AreEqual(inputs, outputs);
}
public static void Main(string[] args)
{
}
}
}
答案 1 :(得分:0)
这很棒!!!!!! ,效果很好!!!
非常感谢您的回答,这非常有用!
我不知道我们可以从内核调用像FlattenIndex这样的 Not-AOTCompile 函数!!!
这非常有趣且有用。这意味着我们可以在GPU上使用更多功能。
通过您的示例,我向类Extension添加了一个函数3维Array(对于使用2 GPU运行的示例):
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;
using Alea.CUDA;
using Alea.CUDA.Utilities;
using Alea.CUDA.IL;
using NUnit.Framework;
using System.Linq;
using System.Threading;
using System.Runtime.InteropServices;
namespace WindowsFormsApplication2
{
public partial class Form1 : Form
{
public Form1()
{
InitializeComponent();
}
#region ********************************************** 1 GPU ************************************************************************************
private void button1_Click(object sender, EventArgs e)
{
textBox1.Text = "";
var inputs = Enumerable.Range(0, 101).Select(i => -5.0 + i * 0.1).ToArray();
var inputs1 = Enumerable.Range(0, 101).Select(i => -5.0 + i * 0.1).ToArray();
var inputs2 = Enumerable.Range(0, 101).Select(i => -15.0 + i * 0.1).ToArray();
var outputs = SquareGPU(inputs, inputs1);
textBox1.Text = "Ok";
}
static double[] SquareGPU(double[] inputs, double[] inputs1)
{
var worker1 = Worker.Get(0);
var dInputs1 = worker1.Malloc(inputs);
var dOutputs1 = worker1.Malloc<double>(inputs1.Length);
const int blockSize = 256;
var numSm = worker1.Device.Attributes.MULTIPROCESSOR_COUNT;
var gridSize = Math.Min(16 * numSm, Common.divup(inputs.Length, blockSize));
var lp = new LaunchParam(gridSize, blockSize);
worker1.Launch(SquareKernel, lp, dOutputs1.Ptr, dInputs1.Ptr, inputs.Length);
return dOutputs1.Gather();
//var worker = Worker.Default;
//using (var dInputs = worker.Malloc(inputs))
//using (var dOutputs = worker.Malloc<double>(inputs.Length))
//{
// const int blockSize = 256;
// var numSm = worker.Device.Attributes.MULTIPROCESSOR_COUNT;
// var gridSize = Math.Min(16 * numSm, Common.divup(inputs.Length, blockSize));
// var lp = new LaunchParam(gridSize, blockSize);
// worker.Launch(SquareKernel, lp, dOutputs.Ptr, dInputs.Ptr, inputs.Length);
// return dOutputs.Gather();
//}
}
#endregion
#region ********************************************** 2 GPU ************************************************************************************
private void button2_Click(object sender, EventArgs e)
{
textBox2.Text = "";
ThreadStart thread0a = new ThreadStart(GPU1);
Thread thread0b = new Thread(thread0a);
thread0b.Start();
ThreadStart thread1a = new ThreadStart(GPU2);
Thread thread1b = new Thread(thread1a);
thread1b.Start();
Boolean j1 = thread0b.Join(10000);
Boolean j2 = thread1b.Join(10000);
if (!j1 || !j2)
{
textBox2.Text = "Erreur";
}
else
{
textBox2.Text = "Ok";
}
}
public static void GPU1()
{
var inputs = Enumerable.Range(0, 101).Select(i => -5.0 + i * 0.1).ToArray();
var inputs1 = Enumerable.Range(0, 101).Select(i => -5.0 + i * 0.1).ToArray();
var inputs2 = Enumerable.Range(0, 101).Select(i => -15.0 + i * 0.1).ToArray();
var outputs = SquareGPU2(Worker.Get(0), inputs, inputs1, inputs2);
}
public static void GPU2()
{
var inputs = Enumerable.Range(0, 101).Select(i => -5.0 + i * 0.1).ToArray();
var inputs1 = Enumerable.Range(0, 101).Select(i => -5.0 + i * 0.1).ToArray();
var inputs2 = Enumerable.Range(0, 101).Select(i => -15.0 + i * 0.1).ToArray();
var outputs = SquareGPU2(Worker.Get(1), inputs, inputs1, inputs2);
}
static double[] SquareGPU2(Worker Worker, double[] inputs, double[] inputs1, double[] inputs2)
{
var dInputs1 = Worker.Malloc(inputs);
var dOutputs1 = Worker.Malloc<double>(inputs1.Length);
const int blockSize = 256;
var numSm = Worker.Device.Attributes.MULTIPROCESSOR_COUNT;
var gridSize = Math.Min(16 * numSm, Common.divup(inputs.Length, blockSize));
var lp = new LaunchParam(gridSize, blockSize);
Worker.Launch(SquareKernel, lp, dOutputs1.Ptr, dInputs1.Ptr, inputs.Length);
return dOutputs1.Gather();
}
#endregion
#region ********************************************** Array 2 Dimension ************************************************************************
private void button3_Click(object sender, EventArgs e)
{
textBox3.Text = "";
var worker = Worker.Default;
// make it small, for we only do it in one GPU thread.
const int rows = 10;
const int cols = 5;
var rng = new Random();
var inputs = new double[rows, cols];
for (var row = 0; row < rows; ++row)
{
for (var col = 0; col < cols; ++col)
{
inputs[row, col] = rng.Next(1, 100);
}
}
var dInputs = worker.Malloc(inputs);
var dOutputs = worker.Malloc<double>(rows, cols);
var lp = new LaunchParam(1, 1);
worker.Launch(Kernel, lp, dOutputs.Ptr, dInputs.Ptr, rows, cols);
var outputs = new double[rows, cols];
dOutputs.Gather(outputs);
Assert.AreEqual(inputs, outputs);
textBox3.Text = "Ok";
}
static int FlattenIndex(int row, int col, int cols)
{
return row * cols + col;
}
#endregion
#region ********************************************** Array 3 Dimension ************************************************************************
private void button4_Click(object sender, EventArgs e)
{
textBox4.Text = "";
var worker = Worker.Default;
// make it small, for we only do it in one GPU thread.
const int rows = 10;
const int cols = 5;
const int cols2 = 3;
var rng = new Random();
var inputs = new double[rows, cols, cols2];
for (var row = 0; row < rows; ++row)
{
for (var col = 0; col < cols; ++col)
{
for (var col2 = 0; col2 < cols2; ++col2)
{
inputs[row, col, col2] = rng.Next(1, 100);
}
}
}
var dInputs = worker.Malloc(inputs);
var dOutputs = worker.Malloc<double>(rows, cols, cols2);
var lp = new LaunchParam(1, 1);
worker.Launch(Kernel3D, lp, dOutputs.Ptr, dInputs.Ptr, rows, cols, cols2);
var outputs = new double[rows, cols, cols2];
dOutputs.Gather(outputs);
Assert.AreEqual(inputs, outputs);
textBox4.Text = "Ok";
}
static int FlattenIndex3D(int row, int col,int col2, int cols, int cols2)
{
return (row * cols * cols2) + (col * cols2) + col2;
}
#endregion
#region **************************************************** AOTCompile *************************************************************************
[AOTCompile]
static void SquareKernel(deviceptr<double> outputs, deviceptr<double> inputs, int n)
{
var start = blockIdx.x * blockDim.x + threadIdx.x;
var stride = gridDim.x * blockDim.x;
for (var i = start; i < n; i += stride)
{
outputs[i] = inputs[i] * inputs[i];
}
}
[AOTCompile]
static void Kernel(deviceptr<double> outputs, deviceptr<double> inputs, int rows, int cols)
{
// for simplicity, I do all things in one thread.
for (var row = 0; row < rows; row++)
{
for (var col = 0; col < cols; col++)
{
outputs[FlattenIndex(row, col, cols)] = inputs[FlattenIndex(row, col, cols)];
}
}
}
[AOTCompile]
static void Kernel3D(deviceptr<double> outputs, deviceptr<double> inputs, int rows, int cols, int cols2)
{
// for simplicity, I do all things in one thread.
for (var row = 0; row < rows; row++)
{
for (var col = 0; col < cols; col++)
{
for (var col2 = 0; col2 < cols2; col2++)
{
outputs[FlattenIndex3D(row, col, col2, cols, cols2)] = inputs[FlattenIndex3D(row, col, col2, cols, cols2)];
}
}
}
}
#endregion
}
static class Extension
{
public static DeviceMemory<T> Malloc<T>(this Worker worker, T[,] array2D)
{
var rows = array2D.GetLength(0);
var cols = array2D.GetLength(1);
var dmem = worker.Malloc<T>(rows * cols);
var handle = GCHandle.Alloc(array2D, GCHandleType.Pinned);
try
{
var hostPtr = handle.AddrOfPinnedObject();
var devicePtr = dmem.Handle;
// we now pinned .NET array, and need to copy them with CUDA Driver API
// to do so we need use worker.Eval to make sure the worker's context is
// pushed onto current thread.
worker.EvalAction(() =>
{
CUDAInterop.cuSafeCall(CUDAInterop.cuMemcpyHtoD(devicePtr, hostPtr,
new IntPtr(Intrinsic.__sizeof<T>() * rows * cols)));
});
}
finally
{
handle.Free();
}
return dmem;
}
public static DeviceMemory<T> Malloc<T>(this Worker worker, T[,,] array3D)
{
var rows = array3D.GetLength(0);
var cols = array3D.GetLength(1);
var cols2 = array3D.GetLength(2);
var dmem = worker.Malloc<T>(rows * cols * cols2);
var handle = GCHandle.Alloc(array3D, GCHandleType.Pinned);
try
{
var hostPtr = handle.AddrOfPinnedObject();
var devicePtr = dmem.Handle;
// we now pinned .NET array, and need to copy them with CUDA Driver API
// to do so we need use worker.Eval to make sure the worker's context is
// pushed onto current thread.
worker.EvalAction(() =>
{
CUDAInterop.cuSafeCall(CUDAInterop.cuMemcpyHtoD(devicePtr, hostPtr,
new IntPtr(Intrinsic.__sizeof<T>() * rows * cols * cols2)));
});
}
finally
{
handle.Free();
}
return dmem;
}
public static DeviceMemory<T> Malloc<T>(this Worker worker, int rows, int cols)
{
return worker.Malloc<T>(rows * cols);
}
public static DeviceMemory<T> Malloc<T>(this Worker worker, int rows, int cols, int cols2)
{
return worker.Malloc<T>(rows * cols * cols2);
}
public static void Gather<T>(this DeviceMemory<T> dmem, T[,] array2D)
{
var rows = array2D.GetLength(0);
var cols = array2D.GetLength(1);
var handle = GCHandle.Alloc(array2D, GCHandleType.Pinned);
try
{
var hostPtr = handle.AddrOfPinnedObject();
var devicePtr = dmem.Handle;
// we now pinned .NET array, and need to copy them with CUDA Driver API
// to do so we need use worker.Eval to make sure the worker's context is
// pushed onto current thread.
dmem.Worker.EvalAction(() =>
{
CUDAInterop.cuSafeCall(CUDAInterop.cuMemcpyDtoH(hostPtr, devicePtr,
new IntPtr(Intrinsic.__sizeof<T>() * rows * cols)));
});
}
finally
{
handle.Free();
}
}
public static void Gather<T>(this DeviceMemory<T> dmem, T[,,] array3D)
{
var rows = array3D.GetLength(0);
var cols = array3D.GetLength(1);
var cols2 = array3D.GetLength(2);
var handle = GCHandle.Alloc(array3D, GCHandleType.Pinned);
try
{
var hostPtr = handle.AddrOfPinnedObject();
var devicePtr = dmem.Handle;
// we now pinned .NET array, and need to copy them with CUDA Driver API
// to do so we need use worker.Eval to make sure the worker's context is
// pushed onto current thread.
dmem.Worker.EvalAction(() =>
{
CUDAInterop.cuSafeCall(CUDAInterop.cuMemcpyDtoH(hostPtr, devicePtr,
new IntPtr(Intrinsic.__sizeof<T>() * rows * cols * cols2)));
});
}
finally
{
handle.Free();
}
}
}
}
翔,非常感谢你的帮助,我永远找不到那样的解决办法!!!!!这太棒了!!!!!
Kinds Regards,
灵光