我写了一个函数(weighted.sd),它给了我一些加权统计数据(如均值,标准差,标准误差和95%置信区间)。我想对因子变量(区域)的每个级别应用此函数,然后使用带有错误栏的ggplot2图中每个区域的加权统计信息(因此95%置信区间。
我也试过tapply和for循环。但我没有做对。另外,我喜欢尽可能多地使用dplyr,因为它易于阅读和理解。
这是我最好的尝试:
#example data
data<-as.data.frame(cbind(rnorm(1:50),as.factor(rnorm(1:50)),rnorm(1:50)))
colnames(data)<-c("index_var","factor_var","weight_var")
weighted.sd <- function(x,weight){
na <- is.na(x) | is.na(weight)
x <- x[!na]
weight <- weight[!na]
sum.w <- sum(weight)
sum.w2 <- sum(weight^2)
mean.w <- sum(x * weight) / sum(weight)
x.var.w<- (sum.w / (sum.w^2 - sum.w2)) * sum(weight * (x - mean.w)^2)
x.sd.w<-sqrt((sum.w / (sum.w^2 - sum.w2)) * sum(weight * (x - mean.w)^2))
SE<- x.sd.w / sqrt(sum(weight))
error <- qnorm(0.975)*x.sd.w/sqrt(sum(weight))
left <- mean.w-error
right <- mean.w+error
return(cbind(mean.w,x.sd.w,SE,error,left,right))
}
test<- data %>%
group_by(factor_var) %>%
do(as.data.frame(weighted.sd(x=index_var,weight=weight_var)))
test
这会导致错误消息(抱歉,部分内容是德语,但您可以使用代码重现它):
Error in as.data.frame(weighted.sd(x = index_var, weight = weight_var)) :
Fehler bei der Auswertung des Argumentes 'x' bei der Methodenauswahl
für Funktion 'as.data.frame': Error in weighted.sd(x = index_var, weight = weight_var) :
object 'index_var' not found
答案 0 :(得分:7)
在do
中使用dplyr
时,您需要将其与.$
一起使用才能像这样工作:
test<- data %>%
group_by(factor_var) %>%
do(as.data.frame(weighted.sd(x=.$index_var,weight=.$weight_var)))
test
所以,这将有效:
> test
Source: local data frame [50 x 7]
Groups: factor_var [50]
factor_var mean.w x.sd.w SE error left right
(dbl) (dbl) (dbl) (dbl) (dbl) (dbl) (dbl)
1 1 1.79711934 NaN NaN NaN NaN NaN
2 2 -0.70698012 NaN NaN NaN NaN NaN
3 3 -0.85125760 NaN NaN NaN NaN NaN
4 4 -0.93903314 NaN NaN NaN NaN NaN
5 5 0.09629631 NaN NaN NaN NaN NaN
6 6 1.02720022 NaN NaN NaN NaN NaN
7 7 1.35090758 NaN NaN NaN NaN NaN
8 8 0.67814249 NaN NaN NaN NaN NaN
9 9 -0.28251464 NaN NaN NaN NaN NaN
10 10 0.38572499 NaN NaN NaN NaN NaN
.. ... ... ... ... ... ... ...
但是,此处的数据不是很好,因为负权重(data$weight_var
)会产生上述NAN。特别是sqrt(negative number)
部分。