Haskell / GHC每线程内存成本

时间:2015-10-15 13:02:57

标签: multithreading haskell memory ghc

我试图了解Haskell(OS X 10.10.5上的GHC 7.10.1)中的(绿色)线程有多贵。我知道它与真正的操作系统线程相比非常便宜,无论是内存使用还是CPU。

是的,所以我开始编写一个带有for n(绿色)线程的超简单程序(使用优秀的async库)然后只需将每个线程休眠m秒。 / p>

嗯,这很容易:

$ cat PerTheadMem.hs 
import Control.Concurrent (threadDelay)
import Control.Concurrent.Async (mapConcurrently)
import System.Environment (getArgs)

main = do
    args <- getArgs
    let (numThreads, sleep) = case args of
                                numS:sleepS:[] -> (read numS :: Int, read sleepS :: Int)
                                _ -> error "wrong args"
    mapConcurrently (\_ -> threadDelay (sleep*1000*1000)) [1..numThreads]

首先,让我们编译并运行它:

$ ghc --version
The Glorious Glasgow Haskell Compilation System, version 7.10.1
$ ghc -rtsopts -O3 -prof -auto-all -caf-all PerTheadMem.hs
$ time ./PerTheadMem 100000 10 +RTS -sstderr

应该分叉100k线程并在每个线程中等待10个,然后打印一些信息:

$ time ./PerTheadMem 100000 10 +RTS -sstderr
340,942,368 bytes allocated in the heap
880,767,000 bytes copied during GC
164,702,328 bytes maximum residency (11 sample(s))
21,736,080 bytes maximum slop
350 MB total memory in use (0 MB lost due to fragmentation)

Tot time (elapsed)  Avg pause  Max pause
Gen  0       648 colls,     0 par    0.373s   0.415s     0.0006s    0.0223s
Gen  1        11 colls,     0 par    0.298s   0.431s     0.0392s    0.1535s

INIT    time    0.000s  (  0.000s elapsed)
MUT     time   79.062s  ( 92.803s elapsed)
GC      time    0.670s  (  0.846s elapsed)
RP      time    0.000s  (  0.000s elapsed)
PROF    time    0.000s  (  0.000s elapsed)
EXIT    time    0.065s  (  0.091s elapsed)
Total   time   79.798s  ( 93.740s elapsed)

%GC     time       0.8%  (0.9% elapsed)

Alloc rate    4,312,344 bytes per MUT second

Productivity  99.2% of total user, 84.4% of total elapsed


real    1m33.757s
user    1m19.799s
sys 0m2.260s

花了很长时间(1m33.757s),因为每个线程应该只等待10秒,但我们现在已经非线性地建立了非线程。总而言之,我们使用了350 MB,这不是太糟糕,每个线程3.5 KB。鉴于初始堆栈大小(-ki is 1 KB)。

是的,但是现在让我们编译处于线程模式,看看我们是否可以更快地进行编译:

$ ghc -rtsopts -O3 -prof -auto-all -caf-all -threaded PerTheadMem.hs
$ time ./PerTheadMem 100000 10 +RTS -sstderr
3,996,165,664 bytes allocated in the heap
2,294,502,968 bytes copied during GC
3,443,038,400 bytes maximum residency (20 sample(s))
14,842,600 bytes maximum slop
3657 MB total memory in use (0 MB lost due to fragmentation)

Tot time (elapsed)  Avg pause  Max pause
Gen  0      6435 colls,     0 par    0.860s   1.022s     0.0002s    0.0028s
Gen  1        20 colls,     0 par    2.206s   2.740s     0.1370s    0.3874s

TASKS: 4 (1 bound, 3 peak workers (3 total), using -N1)

SPARKS: 0 (0 converted, 0 overflowed, 0 dud, 0 GC'd, 0 fizzled)

INIT    time    0.000s  (  0.001s elapsed)
MUT     time    0.879s  (  8.534s elapsed)
GC      time    3.066s  (  3.762s elapsed)
RP      time    0.000s  (  0.000s elapsed)
PROF    time    0.000s  (  0.000s elapsed)
EXIT    time    0.074s  (  0.247s elapsed)
Total   time    4.021s  ( 12.545s elapsed)

Alloc rate    4,544,893,364 bytes per MUT second

Productivity  23.7% of total user, 7.6% of total elapsed

gc_alloc_block_sync: 0
whitehole_spin: 0
gen[0].sync: 0
gen[1].sync: 0

real    0m12.565s
user    0m4.021s
sys 0m1.154s

哇,很多更快,现在只需12秒,方式更好。从Activity Monitor我看到它大致使用了4个OS线程用于100k绿色线程,这是有道理的。

然而, 3657 MB总内存!这比使用的非线程版本多10倍......

到目前为止,我没有使用-prof-hy左右进行任何分析。为了进一步研究,我在单独的运行中进行了一些堆分析(-hy)。在任何一种情况下,内存使用都没有改变,堆分析图看起来有趣的不同(左:非线程,右:线程),但我找不到10倍差异的原因。 heap profile diffs

分析性能分析输出(.prof文件)我也找不到任何真正的区别。 prof diffs

因此我的问题是:内存使用的10倍差异来自哪里?

编辑:提一下:当程序甚至没有使用分析支持进行编译时,同样的差别也适用。因此,使用time ./PerTheadMem 100000 10 +RTS -sstderr运行ghc -rtsopts -threaded -fforce-recomp PerTheadMem.hs为3559 MB。 ghc -rtsopts -fforce-recomp PerTheadMem.hs使用了{39} MB。

编辑2 :在Linux(GHC 7.10.2Linux 3.13.0-32-generic #57-Ubuntu SMP, x86_64)上也会发生同样的情况:1m28.538中非线程460 MB,线程3483 MB是12.604s。 /usr/bin/time -v ...分别报告Maximum resident set size (kbytes): 413684Maximum resident set size (kbytes): 1645384

编辑3 :还将程序更改为直接使用forkIO

import Control.Concurrent (threadDelay, forkIO)
import Control.Concurrent.MVar
import Control.Monad (mapM_)
import System.Environment (getArgs)

main = do
    args <- getArgs
    let (numThreads, sleep) = case args of
                                numS:sleepS:[] -> (read numS :: Int, read sleepS :: Int)
                                _ -> error "wrong args"
    mvar <- newEmptyMVar
    mapM_ (\_ -> forkIO $ threadDelay (sleep*1000*1000) >> putMVar mvar ())
          [1..numThreads]
    mapM_ (\_ -> takeMVar mvar) [1..numThreads]

它并没有改变任何东西:非线程:152 MB,线程:3308 MB。

1 个答案:

答案 0 :(得分:11)

恕我直言,罪魁祸首是 threadDelay 。 * threadDelay **使用了大量内存。这是一个与你的程序相当的程序,它在内存方面表现得更好。它通过长时间运行的计算确保所有线程同时运行。

uBound = 38
lBound = 34

doSomething :: Integer -> Integer
doSomething 0 = 1
doSomething 1 = 1
doSomething n | n < uBound && n > 0 = let
                  a = doSomething (n-1) 
                  b = doSomething (n-2) 
                in a `seq` b `seq` (a + b)
              | otherwise = doSomething (n `mod` uBound )

e :: Chan Integer -> Int -> IO ()
e mvar i = 
    do
        let y = doSomething . fromIntegral $ lBound + (fromIntegral i `mod` (uBound - lBound) ) 
        y `seq` writeChan mvar y

main = 
    do
        args <- getArgs
        let (numThreads, sleep) = case args of
                                    numS:sleepS:[] -> (read numS :: Int, read sleepS :: Int)
                                    _ -> error "wrong args"
            dld = (sleep*1000*1000) 
        chan <- newChan
        mapM_ (\i -> forkIO $ e chan i) [1..numThreads]
        putStrLn "All threads created"
        mapM_ (\_ -> readChan chan >>= putStrLn . show ) [1..numThreads]
        putStrLn "All read"

以下是时间统计数据:

 $ ghc -rtsopts -O -threaded  test.hs
 $ ./test 200 10 +RTS -sstderr -N4

 133,541,985,480 bytes allocated in the heap
     176,531,576 bytes copied during GC
         356,384 bytes maximum residency (16 sample(s))
          94,256 bytes maximum slop
               4 MB total memory in use (0 MB lost due to fragmentation)

                                     Tot time (elapsed)  Avg pause  Max pause
  Gen  0     64246 colls, 64246 par    1.185s   0.901s     0.0000s    0.0274s
  Gen  1        16 colls,    15 par    0.004s   0.002s     0.0001s    0.0002s

  Parallel GC work balance: 65.96% (serial 0%, perfect 100%)

  TASKS: 10 (1 bound, 9 peak workers (9 total), using -N4)

  SPARKS: 0 (0 converted, 0 overflowed, 0 dud, 0 GC'd, 0 fizzled)

  INIT    time    0.000s  (  0.003s elapsed)
  MUT     time   63.747s  ( 16.333s elapsed)
  GC      time    1.189s  (  0.903s elapsed)
  EXIT    time    0.001s  (  0.000s elapsed)
  Total   time   64.938s  ( 17.239s elapsed)

  Alloc rate    2,094,861,384 bytes per MUT second

  Productivity  98.2% of total user, 369.8% of total elapsed

gc_alloc_block_sync: 98548
whitehole_spin: 0
gen[0].sync: 0
gen[1].sync: 2

每个线程的最大驻留时间约为1.5 kb。我玩了一些线程数和计算的运行长度。由于线程在forkIO之后立即开始执行操作,因此创建100000个线程实际上需要很长时间。但结果为1000个线程。

这是另一个程序,其中threadDelay已被排除&#34;这个没有使用任何CPU,并且可以使用100000个线程轻松执行:

e :: MVar () -> MVar () -> IO ()
e start end = 
    do
        takeMVar start
        putMVar end ()

main = 
    do
        args <- getArgs
        let (numThreads, sleep) = case args of
                                    numS:sleepS:[] -> (read numS :: Int, read sleepS :: Int)
                                    _ -> error "wrong args"
        starts <- mapM (const newEmptyMVar ) [1..numThreads]
        ends <- mapM (const newEmptyMVar ) [1..numThreads]
        mapM_ (\ (start,end) -> forkIO $ e start end) (zip starts ends)
        mapM_ (\ start -> putMVar start () ) starts
        putStrLn "All threads created"
        threadDelay (sleep * 1000 * 1000)
        mapM_ (\ end -> takeMVar end ) ends
        putStrLn "All done"

结果:

     129,270,632 bytes allocated in the heap
     404,154,872 bytes copied during GC
      77,844,160 bytes maximum residency (10 sample(s))
      10,929,688 bytes maximum slop
             165 MB total memory in use (0 MB lost due to fragmentation)

                                     Tot time (elapsed)  Avg pause  Max pause
  Gen  0       128 colls,   128 par    0.178s   0.079s     0.0006s    0.0152s
  Gen  1        10 colls,     9 par    0.367s   0.137s     0.0137s    0.0325s

  Parallel GC work balance: 50.09% (serial 0%, perfect 100%)

  TASKS: 10 (1 bound, 9 peak workers (9 total), using -N4)

  SPARKS: 0 (0 converted, 0 overflowed, 0 dud, 0 GC'd, 0 fizzled)

  INIT    time    0.000s  (  0.001s elapsed)
  MUT     time    0.189s  ( 10.094s elapsed)
  GC      time    0.545s  (  0.217s elapsed)
  EXIT    time    0.001s  (  0.002s elapsed)
  Total   time    0.735s  ( 10.313s elapsed)

  Alloc rate    685,509,460 bytes per MUT second

  Productivity  25.9% of total user, 1.8% of total elapsed

在我的i5上,创建100000个线程所需的时间不到一秒,然后将#34; start&#34;无功。每个线程的峰值驻留大约为778个字节,一点都不差!

检查threadDelay的实现,我们发现它对于线程和非线程的情况实际上是不同的:

https://hackage.haskell.org/package/base-4.8.1.0/docs/src/GHC.Conc.IO.html#threadDelay

然后在这里:https://hackage.haskell.org/package/base-4.8.1.0/docs/src/GHC.Event.TimerManager.html

看起来很无辜。但是对于那些调用threadDelay的人来说,旧版本的base有一个(内存)厄运的奥术拼写:

https://hackage.haskell.org/package/base-4.4.0.0/docs/src/GHC-Event-Manager.html#line-121

如果还有问题,很难说。然而,人们总能希望现实生活中的#34;并发程序不需要同时在threadDelay上等待太多线程。我从一开始就会关注我对threadDelay的使用。