我最近开始使用nltk模块进行文本分析。我陷入了困境。我想在数据帧上使用word_tokenize,以便获得数据帧的特定行中使用的所有单词。
data example:
text
1. This is a very good site. I will recommend it to others.
2. Can you please give me a call at 9983938428. have issues with the listings.
3. good work! keep it up
4. not a very helpful site in finding home decor.
expected output:
1. 'This','is','a','very','good','site','.','I','will','recommend','it','to','others','.'
2. 'Can','you','please','give','me','a','call','at','9983938428','.','have','issues','with','the','listings'
3. 'good','work','!','keep','it','up'
4. 'not','a','very','helpful','site','in','finding','home','decor'
基本上,我想将所有单词分开并找到数据框中每个文本的长度。
我知道word_tokenize可以用于字符串,但是如何将它应用到整个数据帧?
请帮忙!
提前致谢...
答案 0 :(得分:16)
您可以使用DataFrame API的 apply 方法:
.class
输出:
"Decompiled .class file, bytecode version: 49.0(Java 5.0)"
"Sources for 'Android API 11 Platform' not found."
要查找每个文本的长度,请尝试再次使用 apply 和 lambda函数:
import pandas as pd
import nltk
df = pd.DataFrame({'sentences': ['This is a very good site. I will recommend it to others.', 'Can you please give me a call at 9983938428. have issues with the listings.', 'good work! keep it up']})
df['tokenized_sents'] = df.apply(lambda row: nltk.word_tokenize(row['sentences']), axis=1)
答案 1 :(得分:16)
pandas.Series.apply 比pandas.DataFrame.apply更快
import pandas as pd
import nltk
df = pd.read_csv("/path/to/file.csv")
start = time.time()
df["unigrams"] = df["verbatim"].apply(nltk.word_tokenize)
print "series.apply", (time.time() - start)
start = time.time()
df["unigrams2"] = df.apply(lambda row: nltk.word_tokenize(row["verbatim"]), axis=1)
print "dataframe.apply", (time.time() - start)
在示例125 MB csv文件
上series.apply 144.428858995
dataframe.apply 201.884778976
修改:在 series.apply(nltk.word_tokenize)之后,您可能会认为Dataframe df 的尺寸较大,这可能会影响下一个操作的运行时 dataframe.apply(nltk.word_tokenize)。
熊猫为这种情况进行了优化。通过仅分别执行dataframe.apply(nltk.word_tokenize),我得到了类似 200s 的运行时。
答案 2 :(得分:2)
我将向您展示一个示例。假设您有一个名为 twitter_df 的数据框,并且已在其中存储了情绪和文本。所以,首先我将文本数据提取到列表中,如下所示:
tweetText = twitter_df['text']
然后令牌化
from nltk.tokenize import word_tokenize
tweetText = tweetText.apply(word_tokenize)
tweetText.head()
我认为这会对您有所帮助
答案 3 :(得分:0)
可能需要添加str()才能将熊猫的对象类型转换为字符串。
记住,计算单词的更快方法通常是计算空格。
有趣的是令牌生成器对期间进行计数。可能要先删除那些,也可能要删除数字。至少在这种情况下,取消注释下面的行将导致计数相等。
import nltk
import pandas as pd
sentences = pd.Series([
'This is a very good site. I will recommend it to others.',
'Can you please give me a call at 9983938428. have issues with the listings.',
'good work! keep it up',
'not a very helpful site in finding home decor. '
])
# remove anything but characters and spaces
sentences = sentences.str.replace('[^A-z ]','').str.replace(' +',' ').str.strip()
splitwords = [ nltk.word_tokenize( str(sentence) ) for sentence in sentences ]
print(splitwords)
# output: [['This', 'is', 'a', 'very', 'good', 'site', 'I', 'will', 'recommend', 'it', 'to', 'others'], ['Can', 'you', 'please', 'give', 'me', 'a', 'call', 'at', 'have', 'issues', 'with', 'the', 'listings'], ['good', 'work', 'keep', 'it', 'up'], ['not', 'a', 'very', 'helpful', 'site', 'in', 'finding', 'home', 'decor']]
wordcounts = [ len(words) for words in splitwords ]
print(wordcounts)
# output: [12, 13, 5, 9]
wordcounts2 = [ sentence.count(' ') + 1 for sentence in sentences ]
print(wordcounts2)
# output: [12, 13, 5, 9]
如果您不使用熊猫,则可能不需要str()