我编写了一个Python函数,用于计算大数(N~10 ^ 3)粒子之间的成对电磁相互作用,并将结果存储在NxN complex128 ndarray中。它运行,但它是较大程序中最慢的部分,当N = 900 [校正]时需要大约40秒。原始代码如下所示:
import numpy as np
def interaction(s,alpha,kprop): # s is an Nx3 real array
# alpha is complex
# kprop is float
ndipoles = s.shape[0]
Amat = np.zeros((ndipoles,3, ndipoles, 3), dtype=np.complex128)
I = np.array([[1,0,0],[0,1,0],[0,0,1]])
im = complex(0,1)
k2 = kprop*kprop
for i in range(ndipoles):
xi = s[i,:]
for j in range(ndipoles):
if i != j:
xj = s[j,:]
dx = xi-xj
R = np.sqrt(dx.dot(dx))
n = dx/R
kR = kprop*R
kR2 = kR*kR
A = ((1./kR2) - im/kR)
nxn = np.outer(n, n)
nxn = (3*A-1)*nxn + (1-A)*I
nxn *= -alpha*(k2*np.exp(im*kR))/R
else:
nxn = I
Amat[i,:,j,:] = nxn
return(Amat.reshape((3*ndipoles,3*ndipoles)))
我之前从未使用过Cython,但这似乎是开始加快速度的好地方,所以我几乎盲目地调整了我在在线教程中找到的技术。我得到了一些加速(30秒对40秒),但没有我想象的那么戏剧性,所以我想知道我是做错了什么还是错过了关键的一步。以下是我对上述例程进行cython化的最佳尝试:
import numpy as np
cimport numpy as np
DTYPE = np.complex128
ctypedef np.complex128_t DTYPE_t
def interaction(np.ndarray s, DTYPE_t alpha, float kprop):
cdef float k2 = kprop*kprop
cdef int i,j
cdef np.ndarray xi, xj, dx, n, nxn
cdef float R, kR, kR2
cdef DTYPE_t A
cdef int ndipoles = s.shape[0]
cdef np.ndarray Amat = np.zeros((ndipoles,3, ndipoles, 3), dtype=DTYPE)
cdef np.ndarray I = np.array([[1,0,0],[0,1,0],[0,0,1]])
cdef DTYPE_t im = complex(0,1)
for i in range(ndipoles):
xi = s[i,:]
for j in range(ndipoles):
if i != j:
xj = s[j,:]
dx = xi-xj
R = np.sqrt(dx.dot(dx))
n = dx/R
kR = kprop*R
kR2 = kR*kR
A = ((1./kR2) - im/kR)
nxn = np.outer(n, n)
nxn = (3*A-1)*nxn + (1-A)*I
nxn *= -alpha*(k2*np.exp(im*kR))/R
else:
nxn = I
Amat[i,:,j,:] = nxn
return(Amat.reshape((3*ndipoles,3*ndipoles)))
答案 0 :(得分:11)
NumPy的真正强大之处在于以矢量化方式在大量元素上执行操作,而不是在遍布循环的块中使用该操作。在您的情况下,您使用两个嵌套循环和一个IF条件语句。我建议扩展中间数组的维度,这将导致the decorator pattern发挥作用,因此可以一次性对所有元素使用相同的操作,而不是循环中的小块数据。
为了扩展尺寸,可以使用NumPy's powerful broadcasting capability
。因此,遵循这样一个前提的矢量化实现看起来像这样 -
In [703]: N = 10
...: s = np.random.rand(N,3) + complex(0,1)*np.random.rand(N,3)
...: alpha = 3j
...: kprop = 5.4
...:
In [704]: out_org = interaction(s,alpha,kprop)
...: out_vect = vectorized_interaction(s,alpha,kprop)
...: print np.allclose(np.real(out_org),np.real(out_vect))
...: print np.allclose(np.imag(out_org),np.imag(out_vect))
...:
True
True
In [705]: %timeit interaction(s,alpha,kprop)
100 loops, best of 3: 7.6 ms per loop
In [706]: %timeit vectorized_interaction(s,alpha,kprop)
1000 loops, best of 3: 304 µs per loop
运行时测试和输出验证 -
案例#1:
In [707]: N = 100
...: s = np.random.rand(N,3) + complex(0,1)*np.random.rand(N,3)
...: alpha = 3j
...: kprop = 5.4
...:
In [708]: out_org = interaction(s,alpha,kprop)
...: out_vect = vectorized_interaction(s,alpha,kprop)
...: print np.allclose(np.real(out_org),np.real(out_vect))
...: print np.allclose(np.imag(out_org),np.imag(out_vect))
...:
True
True
In [709]: %timeit interaction(s,alpha,kprop)
1 loops, best of 3: 826 ms per loop
In [710]: %timeit vectorized_interaction(s,alpha,kprop)
100 loops, best of 3: 14 ms per loop
案例#2:
In [711]: N = 900
...: s = np.random.rand(N,3) + complex(0,1)*np.random.rand(N,3)
...: alpha = 3j
...: kprop = 5.4
...:
In [712]: out_org = interaction(s,alpha,kprop)
...: out_vect = vectorized_interaction(s,alpha,kprop)
...: print np.allclose(np.real(out_org),np.real(out_vect))
...: print np.allclose(np.imag(out_org),np.imag(out_vect))
...:
True
True
In [713]: %timeit interaction(s,alpha,kprop)
1 loops, best of 3: 1min 7s per loop
In [714]: %timeit vectorized_interaction(s,alpha,kprop)
1 loops, best of 3: 1.59 s per loop
案例#3:
{{1}}