测试简单线性回归中的斜率是否等于R中的给定常数

时间:2015-10-11 01:11:07

标签: r testing lm

我想测试简单线性回归中的斜率是否等于零以外的给定常数。

> x <- c(1,2,3,4)
> y <- c(2,5,8,13)
> fit <- lm(y ~ x)
> summary(fit)

Call:
lm(formula = y ~ x)

Residuals:
   1    2    3    4 
 0.4 -0.2 -0.8  0.6 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)   
(Intercept)  -2.0000     0.9487  -2.108  0.16955   
x             3.6000     0.3464  10.392  0.00913 **
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.7746 on 2 degrees of freedom
Multiple R-squared:  0.9818,    Adjusted R-squared:  0.9727 
F-statistic:   108 on 1 and 2 DF,  p-value: 0.009133
> confint(fit)
                2.5 %   97.5 %
(Intercept) -6.081855 2.081855
x            2.109517 5.090483

在这个例子中,我想测试斜率是否等于5.我知道我不会拒绝它,因为5是在95%CI中。但是有没有能直接给我p值的函数?

3 个答案:

答案 0 :(得分:6)

你只需构造零假设斜率= 5的t统计量:

# Compute Summary with statistics      
sfit<- summary(fit)
# Compute t-student H0: intercept=5. The estimation of coefficients and their s.d. are in sfit$coefficients
tstats <- (5-sfit$coefficients[2,1])/sfit$coefficients[2,2]
# Calculates two tailed probability
pval<- 2 * pt(abs(tstats), df = df.residual(fit), lower.tail = FALSE)
print(pval)

答案 1 :(得分:5)

测试拟合是否明显不同于特定系数的一种方法是构造“偏移”,其中该系数用作应用于x值的因子。您应该将此视为重新设置“零”至少为零斜率。拦截仍然是“自由”到“移动”,呃,估计。

 fit2 <- lm( y~x +offset(5*x) )
#----------------
 summary(fit2)
#--------
Call:
lm(formula = y ~ x + offset(5 * x))

Residuals:
   1    2    3    4 
 0.4 -0.2 -0.8  0.6 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)  
(Intercept)  -2.0000     0.9487  -2.108   0.1695  
x            -1.4000     0.3464  -4.041   0.0561 .
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.7746 on 2 degrees of freedom
Multiple R-squared:  0.9818,    Adjusted R-squared:  0.9727 
F-statistic:   108 on 1 and 2 DF,  p-value: 0.009133

现在与您的fit - 对象的结果进行比较。 x的系数恰好相差5。模型拟合统计量是相同的,但是你怀疑x - 变量的p值要低得多......呃,更高,即不太重要。

> summary(fit)

Call:
lm(formula = y ~ x)

Residuals:
   1    2    3    4 
 0.4 -0.2 -0.8  0.6 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)   
(Intercept)  -2.0000     0.9487  -2.108  0.16955   
x             3.6000     0.3464  10.392  0.00913 **
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.7746 on 2 degrees of freedom
Multiple R-squared:  0.9818,    Adjusted R-squared:  0.9727 
F-statistic:   108 on 1 and 2 DF,  p-value: 0.009133

答案 2 :(得分:0)

我的印象是linearHypothesis包中的car函数提供了执行此操作的标准方法。

例如

library(car)

x <- 1:4
y <- c(2, 5, 8, 13)
model <- lm(y ~ x)

linearHypothesis(model, "x = 1")
#> Linear hypothesis test
#> 
#> Hypothesis:
#> x = 1
#> 
#> Model 1: restricted model
#> Model 2: y ~ x
#> 
#>   Res.Df  RSS Df Sum of Sq      F  Pr(>F)  
#> 1      3 35.0                              
#> 2      2  1.2  1      33.8 56.333 0.01729 *
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

这里的假设检验表明,受限制的模型(即x的系数等于1的情况)通过F统计量的统计学方法解释的方差小于完整模型。< / p>

这比在公式中使用offset更有用,因为您可以一次测试多个限制:

model <- lm(y ~ x + I(x^2))
linearHypothesis(model, c("I(x^2) = 1", "x = 1"))
#> Linear hypothesis test
#> 
#> Hypothesis:
#> I(x^2) = 1
#> x = 1
#> 
#> Model 1: restricted model
#> Model 2: y ~ x + I(x^2)
#> 
#>   Res.Df  RSS Df Sum of Sq    F  Pr(>F)  
#> 1      3 30.0                            
#> 2      1  0.2  2      29.8 74.5 0.08165 .
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1