我正在编写一个程序,它将以分段线性方式利用拉格朗日标准形式来插值n次多项式。我让代码在第一个子区间以及第三个和第四个子区间正常工作,但由于某些原因我无法计算,我接收NaN作为第二个子区间的输出。第二个子区间在注释// P2的下方计算。我绞尽脑汁,尝试了一切我想到的改变来解决这个问题,但没有运气。如果有人能提供一些见解,我将非常感激。注意,我只包括第二个插值多项式的代码,第三个和第四个以类似的方式跟随。我提前为我的代码的残酷性道歉。我对C ++比较陌生,没有时间去获得这样一个问题可能会出现的优雅。再次感谢。
ofstream Outfile;
Outfile.open ("PiecewiseLagrange_D.dat");
double *P1 = new double[201]; //Polynomial 1
double *P2 = new double[201]; //Polynomial 2
double *P3 = new double[201]; //Polynomial 3
double *P4 = new double[201]; //Polynomial 4
double *x = new double[201]; //Interpolating points/x's
double *x1 = new double[(int)n+1]; //First subinterval/mesh/xi's
double *x2 = new double[(int)n+1]; //Second subinterval
double *x3 = new double[(int)n+1]; //Third subinterval
double *x4 = new double[(int)n+1]; //Fourth subinterval
double a, b; //interval end points
char func; //function selection
double xDifference1;
double xDifference2;
cout << "Enter an interval with integer end points (lesser value first)";
cin >> a >> b;
for (int i=0; i<=n; i++) //Initialize
{
P1[i] = 0;
P2[i] = 0;
P3[i] = 0;
P4[i] = 0;
x[i] = 0;
x1[i] = 0;
x2[i] = 0;
x3[i] = 0;
x4[i] = 0;
}
x1[0] = a;
for (int i=0; i<=n; i++)
{
x1[i] = x1[0] + i*(((b-a)/4)/n);
cout << x1[i] << endl;
}
cout << endl;
x2[0] = x1[(int) n];
for (int i=0; i<=n; i++)
{
x2[i] = x2[0] + i*(((b-a)/4)/n);
cout << x2[i] << endl;
}
cout << endl;
x3[0] = x2[(int) n];
for (int i=0; i<=n; i++)
{
x3[i] = x3[0] + i*(((b-a)/4)/n);
cout << x3[i] << endl;
}
cout << endl;
x4[0] = x3[(int) n];
for (int i=0; i<=n; i++)
{
x4[i] = x4[0] + i*(((b-a)/4)/n);
cout << x4[i] << endl;
}
cout << "Enter a function to evaluate (1,2, or 3):";
cin >> func;
//cout << "Polynomial is g1(x) on [" << a << "," << b << "]" << endl;
if (func == '1')
{
//P1
x[0] = a;
for (int i=0; i<=200; i++)
{
x[i] = x[0] + i*((x1[(int) n] - x1[0])/200);
}
for (int j=0; j<=200; j++)
{
xDifference1 = 0;
xDifference2 = 0;
for (int i=0; i<=n; i++)
{
xDifference1 = (x1[i] - x1[i+1]);
xDifference2 = (x1[i+1] - x1[i]);
P1[j] = F1(x1[i])*((x[j] - x1[i+1])/xDifference1) + F1(x1[i+1])*((x[j] - x1[i])/xDifference2);
}
Outfile << x[j] << " " << P1[j] << " " << F1(x[j]) << endl;
cout << setw(8) << x[j] << setw(12) << P1[j] << endl;
}
cout << endl;
//P2
x[0] = x1[(int) n];
for (int i=0; i<=200; i++)
{
x[i] = x[0] + i*((x2[(int) n] - x2[0])/200);
}
for (int j=0; j<=200; j++)
{
xDifference1 = 0;
xDifference2 = 0;
for (int i=0; i<=n; i++)
{
xDifference1 = (x2[i] - x2[i+1]);
xDifference2 = (x2[i+1] - x2[i]);
P2[j] = F1(x2[i])*((x[j] - x2[i+1])/xDifference1) + F1(x2[i+1])*((x[j] - x2[i])/xDifference2);
}
Outfile << x[j] << " " << P2[j] << " " << F1(x[j]) << endl;
cout << setw(8) << x[j] << setw(12) << P2[j] << " " << F1(x[j]) << endl;
}
cout << endl;
答案 0 :(得分:1)
由于您没有调用任何其他函数,因此当您将零除零(0.0 / 0.0
)时,您将获得NaN。在某些时候,xDifference1
和/或xDifference2
为零。
将非零除以零得到无穷大。
修改但是,因为显然情况并非如此,进一步的调查显示各种x
数组(包括x2
)中包含n+1
个元素,已编入索引0
通过n
。在循环期间,您可以访问x2[i+1]
。由于i
在最后一次迭代中将等于n
,因此您访问超出数组范围的元素x2[n+1]
并导致未定义的行为。在这种情况下,阵列后面的随机存储器为x2
生成NaN,但不为其他阵列生成NaN。
在一个不相关的注释中,您为每次迭代分配给i
的内部P2[j]
循环,因此从循环中获得的唯一值来自上一次迭代。您的意思是使用P2[j] += ...
吗?