这个游戏在iOS
和Andriod
上称为第9号拼图(我与创作者没有任何关系)。您从3x3
网格开始,其中数字1到9随机放置在电路板上。然后组合相邻的数字(跟踪路径)以加起来9.路径中的最后一个节点变为9,所有其他数字增加1.您将相同的9的倍数组合在一起,其中结束节点变为数字的两倍并且起始节点返回到一个节点。例如,如果您从
1 2 3
5 4 6
7 8 9
你可以从2-3-4开始,最后以
结束1 3 4
5 9 6
7 8 9
然后结合两个9的
1 3 4
5 1 6
7 8 18
游戏的目标是达到1152.基本上它就像2048但没有随机元素。当你用完总数为9的数字时游戏结束,例如
8 7 6
5 5 5
9 1 72
我在python
上写了一个简单的深度优先搜索,它适用于一些谜题,但我的内存却用于其他谜题:
import sys
import Queue
conf = "213 547 689"
grid1 = []
for y in conf.split():
for x in y:
grid1.append(int(x))
a = []
explored = set()
sol = Queue.LifoQueue()
def tostr(node):
s = ''
for i in range(0,9):
s += str(node[i]) + ' '
return s
def printsol():
while not sol.empty():
print sol.get()
def same(x, y, grid):
for n in neighbors(y):
ng = grid[:]
if grid[n] == x and n != y:
if x == 576:
printsol()
sys.exit()
ng[n] = 2*x
ng[y] = 1
sol.put(tostr(ng))
same(2*x, n, ng)
solve(ng, grid)
sol.get()
ng[n] = 1
ng[y] = 2*x
sol.put(tostr(ng))
same(2*x, y, ng)
solve(ng, grid)
sol.get()
##succeeding functions are edited versions of Boggle solver from http://stackoverflow.com/questions/746082/how-to-find-list-of-possible-words-from-a-letter-matrix-boggle-solver
def solve(grid2, grid1):
for i in range(0,9):
if grid2[i] < 9 and tostr(grid2) not in explored:
for result in extending(grid2[i], (i,), grid2):
newgrid = grid2[:]
y = len(result) - 1
for j in range(0, y):
newgrid[result[j]] += 1
newgrid[result[y]] = 9
sol.put(tostr(newgrid))
if tostr(newgrid) not in explored:
same(9, result[y], newgrid)
solve(newgrid, grid2)
sol.get()
explored.add(tostr(grid2))
def extending(add, path, grid2):
if add == 9:
yield path
for n in neighbors(path[-1]):
if n not in path:
add1 = add + grid2[n]
if add1 <= 9:
for result in extending(add1, path + (n,), grid2):
yield result
def neighbors(n):
for nx in range(max(0, n%3-1), min(n%3+2, 3)):
for ny in range(max(0, n/3-1), min(n/3+2, 3)):
yield ny*3+nx
sol.put(tostr(grid1))
solve(grid1, grid1)
如何提高效率?如果不是这样,对于知情搜索来说什么是一个很好的启发式?我想考虑从一定数量的板上数字的平均值的绝对差异,但什么是一个好数字?
答案 0 :(得分:1)
游戏的目标是达到1152
我设法做到了!以下是搜索的示例输出。在第一行,三个数字是:状态的得分,图的深度和矩阵中的最大元素。接下来的三个是矩阵本身:
...
-577 246 576
36 288 9
1 1 576
144 36 72
-577 245 576
36 288 18
18 1 576
144 9 72
-577 249 576
1 288 9
1 288 576
1 1 1
-577 245 576
36 288 1
18 18 576
144 9 72
-577 250 576
1 1 9
1 576 576
1 1 1
-1153 251 1152
1 1 9
1 1 1152
1 1 1
-1153 251 1152
1 1 9
1 1152 1
1 1 1
-577 250 576
1 576 9
1 1 576
1 1 1
-1153 251 1152
1 1 9
1 1 1152
1 1 1
-1153 251 1152
1 1152 9
1 1 1
1 1 1
...
正如你所看到的,为了得分 1152 ,你必须深入探索。还要考虑到分支因子非常大,您可以看到问题具有挑战性。您必须执行〜 250 移动才能获得 1152 的分数。假设每次移动需要 10 秒,你将以 40分钟来玩游戏!!!
我所做的是将每个节点/状态的分数关联起来,在探索过程中,我只保留了顶部 1000 节点/状态。这确保我们仅探索相关节点。 所以剩下的就是设计得分函数/启发式算法。这是我尝试过的得分函数:
使用简单的启发式方法可以构建更复杂的方法。我最终得到的是启发式,它只是上述列表中第一个和最后一个的总和。采用更严格的启发式方法会使搜索变得混乱。这是代码(python 3):
import random
from queue import PriorityQueue
dx = [0, 0, -1, -1, -1, 1, 1, 1]
dy = [-1, 1, -1, 0, 1, -1, 0, 1]
class State:
def __init__(self, a, depth):
self.depth = depth
if len(a) == 9:
self.a = (tuple(a[:3]), tuple(a[3:6]), tuple(a[6:]))
if len(a) == 3:
self.a = tuple(map(tuple, a))
@staticmethod
def check(i):
return 0 <= i < 3
def get_9_moves(self):
ans = []
for i in range(3):
for j in range(3):
if self.a[i][j] % 9 == 0:
for k in range(len(dx)):
ni, nj = i + dx[k], j + dy[k]
if State.check(ni) and State.check(nj):
if self.a[ni][nj] % 9 == 0 and \
self.a[i][j] == self.a[ni][nj]:
ans.append(((i, j), (ni, nj)))
return ans
def get_sum_moves_rec(self, i, j, cur_sum, cur_cells, ans):
if cur_sum > 9:
return
if cur_sum == 9 and len(cur_cells) > 1:
ans.append(tuple(cur_cells))
for k in range(len(dx)):
ni, nj = i + dx[k], j + dy[k]
pair = (ni, nj)
if self.check(ni) and self.check(nj) and pair not in cur_cells:
cur_cells.append(pair)
self.get_sum_moves_rec(ni, nj, cur_sum + self.a[ni][nj], cur_cells, ans)
cur_cells.pop()
def get_sum_moves(self):
ans = []
for i in range(3):
for j in range(3):
self.get_sum_moves_rec(i, j, self.a[i][j], [(i, j)], ans)
return ans
def get_neighbours(self):
neighbours = []
moves = self.get_sum_moves()
for move in moves:
a = list(map(list, self.a))
for i in range(len(move)):
x, y = move[i]
if i == len(move)-1:
a[x][y] = 9
else:
a[x][y] += 1
neighbours.append(State(a, self.depth+1))
moves = self.get_9_moves()
for move in moves:
a = list(map(list, self.a))
a[move[0][0]][move[0][1]] = 1
a[move[1][0]][move[1][1]] *= 2
neighbours.append(State(a, self.depth+1))
return neighbours
def get_value(self):
return max(map(max, self.a))
# 576
def get_score0(self):
return -self.get_value()
def get_score1(self):
ans = 0
for i in range(3):
for j in range(3):
if self.a[i][j] % 9 == 0:
ans += 1
return ans
# 36
def get_score2(self):
ans = 0
for i in range(3):
for j in range(3):
if self.a[i][j] < 9:
ans += 1
return ans
# achieves 1152 but rather slow
def get_score3(self):
return -self.depth
# 36
def get_score4(self):
ans = 0
for i in range(3):
for j in range(3):
if self.a[i][j] == 1:
ans += 1
return ans
# 288
def get_score5(self):
return -sum(map(sum, self.a))
def get_score6(self):
t = []
for i in range(3):
for j in range(3):
if self.a[i][j] % 9 == 0:
t.append((self.a[i][j], (i, j)))
t.sort(reverse=True)
ans = 0
for i in range(len(t) - 1):
pairi = t[i][1]
pairj = t[i+1][1]
if abs(pairi[0]-pairj[0]) <= 1 and abs(pairi[1]-pairj[1]) <= 1:
ans += 1
break
return -ans
def get_score7(self):
t = []
for i in range(3):
for j in range(3):
if self.a[i][j] % 9 == 0:
t.append(self.a[i][j])
t.sort(reverse=True)
ans = 0
for i in range(len(t) - 1):
if t[i] // t[i+1] == 2:
ans += 1
break
return -ans
def get_score8(self):
t = []
for e in self.a:
t.extend(e)
return len(list(filter(lambda x: x >= 9,t)))
def get_score9(self):
t = []
for e in self.a:
t.extend(e)
return len(list(filter(lambda x: x <= 2,t)))
def get_score10(self):
t = []
for e in self.a:
t.extend(e)
return len(set(filter(lambda x: x >= 9,t)))
def get_score_mix(self):
# achieves 1152
return self.get_score0() + self.get_score6()
def __repr__(self):
ans = ''
for i in range(3):
for j in range(3):
ans += '{0:4d} '.format(self.a[i][j])
ans += '\n'
return ans
def __hash__(self):
return hash(self.a)
def __lt__(self, other):
# hash(self) < hash(other)
pass
class Solver:
@staticmethod
def strategy1(s):
visited = set()
while True:
# print(s)
neighbours = s.get_neighbours()
if len(neighbours) == 0:
break
ns = None
for i in range(30):
ns = random.choice(neighbours)
if not ns in visited:
s = ns
break
if ns is None:
break
print(s.get_value())
@staticmethod
def strategy2(s):
visited = set()
max_depth = 6
max_value = 0
calls = 0
def dfs(state, depth):
# print(state)
nonlocal max_value, calls
calls += 1
if depth > max_depth:
return
if state in visited:
return
visited.add(state)
max_value = max(max_value, s.get_value())
for new_state in state.get_neighbours():
dfs(new_state, depth + 1)
dfs(s, 0)
print(max_value)
print(calls)
@staticmethod
def strategy3(s):
visited = set()
pq = PriorityQueue(maxsize=1000)
pq.put((0, s))
visited.add(s)
max_value = 0
while not pq.empty():
score, state = pq.get()
# print(' score0 score1 score2 score3 score4 score5 score6 score7 score8 score9 score10')
# print('{0:7d} {1:7d} {2:7d} {3:7d} {4:7d} {5:7d} {6:7d} {7:7d} {8:7d} {9:7d} {10:7d}'.format(state.get_score0(), state.get_score1(), state.get_score2(),
# state.get_score3(), state.get_score4(), state.get_score5(),
# state.get_score6(), state.get_score7(), state.get_score8(),
# state.get_score9(), state.get_score10()))
print(score, state.depth, state.get_value())
print(state)
max_value = max(max_value, state.get_value())
for new_state in state.get_neighbours():
# print(random.randint(0, 10))
if new_state not in visited:
visited.add(new_state)
pq._put((new_state.get_score_mix(), new_state))
print(max_value)
start = list(range(1, 10))
random.shuffle(start)
s = State(start, 0)
Solver.strategy3(s)
# s = State([1, 1, 18, 18, 18, 36, 18 , 18, 2 ], 0)
# print(s)
#
# for n in s.get_neighbours():
# print(n)
下一步是什么?
由于程序性能不是很好(找到答案需要大约1分钟),因此可以尝试找到对搜索有用的更好的启发式方法。似乎他们应该非常宽松地试图模拟要求,否则他们会搞乱搜索。
答案 1 :(得分:0)
我前段时间写了一些内容并在此发表:http://sourceforge.net/p/puzzlenumber9
它是一种蛮力搜索,但我对每个深度返回的选项进行排序,并限制深度以使其更快。我现在不记得我是如何排序和限制深度的,LOL。 (我将看看代码,稍后当我有时间时添加...我认为代码只是在最后一次运行具有最高总和的每个深度处设置少量结果。)
我确实记得在看到程序返回解决方案感到满意后,在设备上逐个移动路径似乎很乏味:)
我对这段代码的喜爱是,它基本上是“做好工作”,而不是努力寻找最简洁有效的方法。我特别喜欢长case ix of
列表,以破坏对象的方式进行功能简化。
Haskell代码:
{-# OPTIONS_GHC -O2 #-}
import Data.List (sortBy,nubBy)
import Data.Ord (compare)
import System.Time
main = do
putStrLn "Puzzle Number 9 Solver Copyright May 2015 alhambra1"
putStrLn "\nEnter 'e' at any time to exit"
putStrLn "\nEnter target number"
target <- getLine
if null target
then main
else if head target == 'e'
then return ()
else do
putStrLn "Enter number of moves at each choice point (density, 3 to 6 recommended)"
density <- getLine
if null density
then main
else if head density == 'e'
then return ()
else do
putStrLn "Enter board numbers separated by spaces"
board <- getLine
if null board
then main
else if head board == 'e'
then return ()
else do
putStrLn ""
time1 <- getClockTime
let b = map (\x -> read x :: Int) (take 9 $ words board)
t = read (head (words target)) :: Int
d = read (head (words density)) :: Int
print (map reverse $ reverse $ head $ take 1 $ f t b [] d)
time2 <- getClockTime
putStrLn ""
print (timeDiffToString $ diffClockTimes time2 time1)
putStrLn ""
exit
exit = do
putStrLn "Enter 'a' to start again or 'e' to exit"
line <- getLine
if null line
then exit
else if head line == 'a'
then do putStrLn ""
main
else if head line == 'e'
then return ()
else exit
f target board paths toTake
| not (null hasTarget) = [(((\(x,y,z)-> z) . head $ hasTarget):paths)]
| null ms = []
| otherwise = do (s,bd,idxs) <- take toTake (sortBy (\(x,y,z) (x',y',z') -> compare x' x) ms')
f target bd (idxs:paths) toTake
where hasTarget = filter ((==target) . (\(x,y,z)-> x)) ms
ms = moves board
ms' = nubBy (\(x,y,z) (x',y',z') -> let a = drop 1 (init z)
b = drop 1 (init z')
in if not (null a) && not (null b)
then a == b
else False) ms
moves board = do j <- [1..9]
let num = board !! (j - 1)
board' = (take (j - 1) board) ++ [num + 1] ++ (drop j board)
moves' j board' num [j] 0 num
where moves' ix board s idxs prev next
| (s == 9 || multiple) && (length idxs > 1) = [(s,board',idxs)]
| s > 9 && mod s 9 /= 0 = []
| otherwise = case ix of
1 -> if elem 2 idxs then [] else moves' 2 board' (s + b) (2:idxs) next b
++ (if elem 4 idxs then [] else moves' 4 board' (s + d) (4:idxs) next d)
++ (if elem 5 idxs then [] else moves' 5 board' (s + e) (5:idxs) next e)
2 -> if elem 1 idxs then [] else moves' 1 board' (s + a) (1:idxs) next a
++ (if elem 3 idxs then [] else moves' 3 board' (s + c) (3:idxs) next c)
++ (if elem 4 idxs then [] else moves' 4 board' (s + d) (4:idxs) next d)
++ (if elem 5 idxs then [] else moves' 5 board' (s + e) (5:idxs) next e)
++ (if elem 6 idxs then [] else moves' 6 board' (s + f) (6:idxs) next f)
3 -> if elem 2 idxs then [] else moves' 2 board' (s + b) (2:idxs) next b
++ (if elem 5 idxs then [] else moves' 5 board' (s + e) (5:idxs) next e)
++ (if elem 6 idxs then [] else moves' 6 board' (s + f) (6:idxs) next f)
4 -> if elem 1 idxs then [] else moves' 1 board' (s + a) (1:idxs) next a
++ (if elem 2 idxs then [] else moves' 2 board' (s + b) (2:idxs) next b)
++ (if elem 5 idxs then [] else moves' 5 board' (s + e) (5:idxs) next e)
++ (if elem 7 idxs then [] else moves' 7 board' (s + g) (7:idxs) next g)
++ (if elem 8 idxs then [] else moves' 8 board' (s + h) (8:idxs) next h)
5 -> if elem 1 idxs then [] else moves' 1 board' (s + a) (1:idxs) next a
++ (if elem 2 idxs then [] else moves' 2 board' (s + b) (2:idxs) next b)
++ (if elem 3 idxs then [] else moves' 3 board' (s + c) (3:idxs) next c)
++ (if elem 4 idxs then [] else moves' 4 board' (s + d) (4:idxs) next d)
++ (if elem 6 idxs then [] else moves' 6 board' (s + f) (6:idxs) next f)
++ (if elem 7 idxs then [] else moves' 7 board' (s + g) (7:idxs) next g)
++ (if elem 8 idxs then [] else moves' 8 board' (s + h) (8:idxs) next h)
++ (if elem 9 idxs then [] else moves' 9 board' (s + i) (9:idxs) next i)
6 -> if elem 2 idxs then [] else moves' 2 board' (s + b) (2:idxs) next b
++ (if elem 3 idxs then [] else moves' 3 board' (s + c) (3:idxs) next c)
++ (if elem 5 idxs then [] else moves' 5 board' (s + e) (5:idxs) next e)
++ (if elem 8 idxs then [] else moves' 8 board' (s + h) (8:idxs) next h)
++ (if elem 9 idxs then [] else moves' 9 board' (s + i) (9:idxs) next i)
7 -> if elem 4 idxs then [] else moves' 4 board' (s + d) (4:idxs) next d
++ (if elem 5 idxs then [] else moves' 5 board' (s + e) (5:idxs) next e)
++ (if elem 8 idxs then [] else moves' 8 board' (s + h) (8:idxs) next h)
8 -> if elem 4 idxs then [] else moves' 4 board' (s + d) (4:idxs) next d
++ (if elem 5 idxs then [] else moves' 5 board' (s + e) (5:idxs) next e)
++ (if elem 6 idxs then [] else moves' 6 board' (s + f) (6:idxs) next f)
++ (if elem 7 idxs then [] else moves' 7 board' (s + g) (7:idxs) next g)
++ (if elem 9 idxs then [] else moves' 9 board' (s + i) (9:idxs) next i)
9 -> if elem 5 idxs then [] else moves' 5 board' (s + e) (5:idxs) next e
++ (if elem 6 idxs then [] else moves' 6 board' (s + f) (6:idxs) next f)
++ (if elem 8 idxs then [] else moves' 8 board' (s + h) (8:idxs) next h)
where multiple = length idxs == 2 && prev == next && mod s 9 == 0
[a,b,c,d,e,f,g,h,i] = board
board' = if s == 9
then (take (headIdxs - 1) board) ++ [9] ++ (drop headIdxs board)
else if multiple
then board''
else (take (headIdxs - 1) board) ++ [next + 1] ++ (drop headIdxs board)
board'' = map (\(x,y) -> if x == headIdxs then y * 2 else if x == last idxs then 1 else y) (zip [1..] board)
headIdxs = head idxs
答案 2 :(得分:0)
我制作了一个Python程序来解决这个问题,并且它尝试移动的顺序中唯一真正的智能就是这两件事。最糟糕的解决问题的时间似乎需要大约30秒。平均值更像是3。
深度优先搜索结合Python垃圾收集使内存使用量低于50MB。
答案 3 :(得分:-1)
问题非常简单:DFS将遍历一条路径,直到它结束。因此,您最终会得到一个巨大的discovered
集合,其中包含可能永远不会被使用的高值。改为使用BFS或A *。