大熊猫填补了性能问题

时间:2015-10-08 15:20:39

标签: python performance pandas

我有一个带有多索引(Date,InputTime)的数据框,这个数据框可能在列(Value,Id)中包含一些NA值。我想填写价值,但仅限日期,我无论如何也无法以非常有效的方式做到这一点。

以下是我拥有的数据框类型:

Dataframe example

这是我想要的结果:

Dataframe properly fill forward by date only

因此,要按日期正确填写,我可以使用groupby(level = 0)函数。 groupby很快但是按日期对数据帧组应用的填充函数实际上太慢了。

这是我用来比较简单填充的代码(它没有给出预期的结果但是运行得很快)和预期的按日期填充(这给出了预期的结果,但实际上太慢了)。 / p>

import numpy as np
import pandas as pd
import datetime as dt

# Show pandas & numpy versions
print('pandas '+pd.__version__)
print('numpy '+np.__version__)

# Build a big list of (Date,InputTime,Value,Id)
listdata = []
d = dt.datetime(2001,10,6,5)
for i in range(0,100000):
    listdata.append((d.date(), d, 2*i if i%3==1 else np.NaN, i if i%3==1 else np.NaN))
    d = d + dt.timedelta(hours=8)

# Create the dataframe with Date and InputTime as index
df = pd.DataFrame.from_records(listdata, index=['Date','InputTime'], columns=['Date', 'InputTime', 'Value', 'Id'])

# Simple Fill forward on index
start = dt.datetime.now()
for col in df.columns:
    df[col] = df[col].ffill()
end = dt.datetime.now()
print "Time to fill forward on index = " + str((end-start).total_seconds()) + " s"

# Fill forward on Date (first level of index)
start = dt.datetime.now()
for col in df.columns:
    df[col] = df[col].groupby(level=0).ffill()
end = dt.datetime.now()
print "Time to fill forward on Date only = " + str((end-start).total_seconds()) + " s"

Results

有人可以解释一下为什么这段代码太慢或者帮助我找到一个有效的方法来填写大数据帧上的日期吗?

由于

1 个答案:

答案 0 :(得分:1)

github / jreback:这是#7895的骗局。 .ffill没有在groupby操作的cython中实现(虽然它当然可以),而是在每个组上调用python空间。 这是一个简单的方法。 网址:https://github.com/pandas-dev/pandas/issues/11296

根据jreback的回答,当你做一个groupby时,ffill()没有优化,但是cumsum()是。试试这个:

df = df.sort_index()
df.ffill() * (1 - df.isnull().astype(int)).groupby(level=0).cumsum().applymap(lambda x: None if x == 0 else 1)