当我尝试使用返回Vector对象的UDF时,Spark会抛出以下异常:
Cause: java.lang.UnsupportedOperationException: Not supported DataType: org.apache.spark.mllib.linalg.VectorUDT@f71b0bce
如何在UDF中使用Vector? Spark版本是1.5.1。
UPD
val dataFrame: DataFrame = sqlContext.createDataFrame(Seq(
(0, 1, 2),
(0, 3, 4),
(0, 5, 6)
)).toDF("key", "a", "b")
val someUdf = udf {
(a: Double, b: Double) => Vectors.dense(a, b)
}
dataFrame.groupBy(col("key"))
.agg(someUdf(avg("a"), avg("b")))
答案 0 :(得分:1)
您的UDF本身没有任何问题。看起来你得到一个异常,因为你在聚合列的agg
方法中调用它。要使其工作,您只需将其推到agg
步骤:
dataFrame
.groupBy($"key")
.agg(avg($"a").alias("a"), avg($"b").alias("b"))
.select($"key", someUdf($"a", $"b"))