在R中的非线性模型中计算模型效率的函数问题

时间:2015-10-06 17:46:14

标签: r dataframe cross-validation nonlinear-functions

我有一个数据框df

structure(list(ID = structure(c(8L, 8L, 8L, 8L, 8L, 8L, 8L, 9L, 
9L, 9L, 10L, 10L, 10L, 10L, 11L, 11L, 11L, 11L, 11L, 12L, 12L, 
13L, 13L, 13L, 14L, 14L, 14L, 14L, 14L, 15L, 15L, 15L, 15L, 16L, 
16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 17L, 17L, 17L, 17L, 17L, 
17L, 17L, 18L, 18L, 18L, 18L, 18L, 18L, 20L, 20L, 20L, 40L, 40L, 
40L, 40L, 40L, 40L, 40L, 57L, 57L, 62L, 62L, 62L, 70L, 70L, 70L, 
70L, 70L, 2L, 2L, 2L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 46L, 
46L, 46L, 46L, 60L, 60L, 60L, 60L, 60L, 60L, 60L, 60L, 60L), .Label = c("AU-Tum", 
"BE-Bra", "BR-Sa3", "CA-Ca1", "CA-Ca2", "CA-Ca3", "CA-Gro", "Ca-Man", 
"CA-NS1", "CA-NS2", "CA-NS3", "CA-NS4", "CA-NS5", "CA-NS6", "CA-NS7", 
"CA-Oas", "CA-Obs", "CA-Ojp", "CA-Qcu", "CA-Qfo", "CA-SF1", "CA-SF2", 
"CA-SF3", "CA-SJ1", "CA-SJ2", "CA-SJ3", "CA-TP1", "CA-TP2", "CA-TP4", 
"CZ-Bk1", "DE-Har", "DE-Wet", "DK-Sor", "FI-Hyy", "FR-Hes", "FR-Pue", 
"ID-Pag", "IT-Ro1", "IT-Ro2", "IT-Sro", "JP-Tak", "JP-Tef", "NL-Loo", 
"SE-Abi", "SE-Fla", "SE-Nor", "SE-Sk1", "SE-Sk2", "SE-St1", "UK-Gri", 
"US-Blo", "US-Bn1", "US-Bn2", "Us-Bn3", "US-Dk3", "US-Fmf", "US-Fwf", 
"US-Ha1", "US-Ha2", "US-Ho1", "US-Ho2", "US-Lph", "US-Me1", "US-Me3", 
"US-Nc2", "US-NR1", "US-Sp1", "US-Sp2", "US-Sp3", "US-Umb", "US-Wcr", 
"US-Wi0", "US-Wi1", "US-Wi2", "US-Wi4", "US-Wi8"), class = "factor"), 
    x = c(156, 157, 160, 162, 163, 164, 165, 153, 154, 155, 71, 
    72, 73, 74, 37, 38, 39, 40, 41, 39, 40, 22, 23, 24, 12, 13, 
    14, 15, 16, 4, 5, 6, 7, 74, 75, 76, 77, 78, 79, 80, 81, 82, 
    126, 127, 128, 129, 130, 131, 132, 71, 72, 73, 74, 75, 76, 
    99, 100, 101, 49, 50, 51, 52, 53, 54, 56, 9, 10, 46, 47, 
    48, 84, 85, 86, 87, 88, 77, 78, 79, 101, 105, 106, 107, 108, 
    109, 110, 81, 82, 84, 88, 131, 132, 133, 134, 135, 136, 137, 
    138, 139), y = c(50.0472381226718, 706.825824817992, 729.621982051409, 
    593.225827791495, 685.154353165934, 574.088067465695, 650.30821636616, 
    494.185166497016, 436.312162090908, 631.891738044098, 280.949480787385, 
    641.231373456365, 412.116433330579, 416.824746264203, 415.905685925856, 
    494.374217984441, 201.745910386788, 486.030122926459, 647.782697262242, 
    389.839577941515, 256.552344558528, 605.790549736819, 483.045965372879, 
    668.017897433514, 35.2706101682852, 265.693628564011, 285.116345260642, 
    291.023782284086, 357.428790589795, 205.920375034591, 229.606221692753, 
    230.952761338012, 241.641164634028, 1089.06303295676, 1255.88808925333, 
    1087.75402177912, 1068.248897182, 1212.17254891642, 884.222588171535, 
    938.887718005513, 863.582247020735, 1065.91969416523, 902.338968377328, 
    790.570635510725, 834.500908313203, 710.755041345197, 814.002362551197, 
    726.814950022846, 828.559687148314, 611.564698476112, 603.238720579422, 
    524.322001078981, 565.296378873638, 532.431853589369, 597.174114277044, 
    606.075737104722, 686.408686154056, 705.914347674276, 1858.98340779543, 
    1893.38468471169, 1819.83262739703, 1827.31409981102, 1640.5816780664, 
    1689.0365549922, 2112.67917439342, 479.374777290737, 326.663507855032, 
    1184.81825619942, 1281.2920902365, 1269.12480160726, 1265.48484068702, 
    1193.29000986667, 1156.81486114406, 1199.7373066445, 1116.24029749935, 
    1100.47051284742, 1072.57190890331, 1228.25697739795, 1576.32775748242, 
    1631.14609672129, 1796.87265141308, 1712.90461264737, 1844.87409764528, 
    1938.56225809082, 1663.52108450048, 1626.12740687071, 1333.52924151719, 
    1349.01338642137, 1376.41668179166, 1362.32371946308, 1317.75608457439, 
    1519.12511487596, 1558.26111694807, 1588.8933303128, 1624.50100837374, 
    1433.10019567201, 1371.01498340943, 1439.94849821774)), .Names = c("ID", 
"x", "y"), row.names = c(290L, 291L, 292L, 293L, 294L, 295L, 
296L, 297L, 298L, 299L, 300L, 301L, 302L, 303L, 304L, 305L, 306L, 
307L, 308L, 309L, 310L, 311L, 312L, 313L, 314L, 315L, 316L, 317L, 
318L, 319L, 320L, 321L, 322L, 323L, 324L, 325L, 326L, 327L, 328L, 
329L, 330L, 331L, 332L, 333L, 334L, 335L, 336L, 337L, 338L, 339L, 
340L, 341L, 342L, 343L, 344L, 351L, 352L, 353L, 424L, 425L, 426L, 
427L, 428L, 429L, 430L, 471L, 472L, 493L, 494L, 495L, 512L, 513L, 
514L, 515L, 516L, 266L, 267L, 268L, 438L, 439L, 440L, 441L, 442L, 
443L, 444L, 451L, 452L, 453L, 454L, 484L, 485L, 486L, 487L, 488L, 
489L, 490L, 491L, 492L), class = "data.frame")

我已经创建了一个函数stat来提高交叉验证中的模型效率,让一个主题退出模式。

    library(stats)
    library (hydroGOF)
    stat <- function(dat) {
      id <- unique(dat$ID)
      Out<-c()
      Out2<-c()
      Out3<-c()
      Out4<-c()
      for (i in 1:id){
        fit1 <- try(nls(y~A*(x^B)*(exp(k*x)), data = dat[dat$ID != i,], start = list(A = 1000, B = 0.170, k = -0.00295)), silent=TRUE);
        Out[i] <- if (inherits(fit1, "nls")) sim = predict(fit1, newdata=dat[dat$ID==i,]) else NA;
        fit2 <- try(nls(y~A*x^2+B*x+C, data = dat[dat$ID != i,], start = list(A=-0.4, B=50, C= 300)), silent=TRUE);
        Out2[i] <- if (inherits(fit1, "nls")) sim = predict(fit1, newdata=dat[dat$ID==i,]) else NA;
        fit3 <- try(nls(y~A*x^3+B*x^2+C*x+D, data = dat[dat$ID != i,], start = list(A=0.02, B=-0.6, C= 50, D=200)), silent=TRUE); 
        Out3[i] <- if (inherits(fit3, "nls")) sim = predict(fit3, newdata=dat[dat$ID==i,]) else NA;
        fit4 <- try(nls(y~A*(1-exp(k*x)), data = dat[dat$ID != i,], start = list(A=100, k= -0.224)), silent=TRUE); 
        Out4[i] <- if (inherits(fit4, "nls")) sim = predict(fit4, newdata=dat[dat$ID==i,]) else NA;
list(NSE(Out, dat$y[dat$ID==i]), NSE(Out2, dat$y[dat$ID==i]), NSE(Out3, dat$y[dat$ID==i]), NSE(Out4, dat$y[dat$ID==i]));
      }
    }

然后我在数据帧列表中应用此函数(例如,我只包含一个数据帧)。输出基本上是一个对象列表,其中每个对象是一个数据帧的输出,每个函数包含n个ID NSE值。

df.list<-list(df) # Here I put only one dataframe but it will be more than one. 

res<-lapply(df.list, stat) 

但是,NSE的计算会显示此错误消息。

    Error in NSE.default(Out, dat$y) : 
  Invalid argument type: 'sim' & 'obs' have to be of class: c('integer', 'numeric', 'ts', 'zoo', 'xts') 

有谁知道我的脚本有什么问题?

1 个答案:

答案 0 :(得分:0)

以下是@LyzandeR在另一篇文章中提供的答案

stat <- function(dat) {
      id <- unique(dat$ID)
      NSEs<-list()
      for (i in id){
        fit1 <- try(nls(y~A*(x^B)*(exp(k*x)), data = dat[dat$ID != i,], start = list(A = 1000, B = 0.170, k = -0.00295)), silent=TRUE);
        Out <- if (inherits(fit1, "nls")) sim = predict(fit1, newdata=dat[dat$ID==i,]) else NA;
        fit2 <- try(nls(y~A*x^2+B*x+C, data = dat[dat$ID != i,], start = list(A=-0.4, B=50, C= 300)), silent=TRUE);
        Out2 <- if (inherits(fit1, "nls")) sim = predict(fit1, newdata=dat[dat$ID==i,]) else NA;
        fit3 <- try(nls(y~A*x^3+B*x^2+C*x+D, data = dat[dat$ID != i,], start = list(A=0.02, B=-0.6, C= 50, D=200)), silent=TRUE); 
        Out3 <- if (inherits(fit3, "nls")) sim = predict(fit3, newdata=dat[dat$ID==i,]) else NA;
        fit4 <- try(nls(y~A*(1-exp(k*x)), data = dat[dat$ID != i,], start = list(A=1000, k= -0.224)), silent=TRUE); 
        Out4 <- if (inherits(fit4, "nls")) sim = predict(fit4, newdata=dat[dat$ID==i,]) else NA;
        NSEs[[length(NSEs)+1]] <- c(NSE(Out, dat$y[dat$ID == i]), NSE(Out2, dat$y[dat$ID == i]), NSE(Out3, dat$y[dat$ID == i]), NSE(Out4, dat$y[dat$ID == i]))
      }
      NSEs
    }

    df.list<-list(df) # Here I put only one dataframe but it will be more than one. 

    res<-lapply(df.list, stat)