I have a big data.frame that I want to generate a new column (called Seq) to, which has a sequential values that restarts every time there is a change in a different column. Here is an example of the data.frame (with omitted columns) and the new column called Seq. As you can see there is a sequentiel count, but everytime there is a new IDPath, the sequentiel count restarts. The sequentiel length can have different lengths, some are 1 long, while others are 300.
IDPath LogTime Seq
AADS 19-06-2015 01:57 1
AADS 19-06-2015 01:55 2
AADS 19-06-2015 01:54 3
AADS 19-06-2015 01:53 4
DHSD 19-06-2015 12:57 1
DHSD 19-06-2015 10:58 2
DHSD 19-06-2015 09:08 3
DHSD 19-06-2015 08:41 4
答案 0 :(得分:5)
使用data.table
包,以下是获取所需内容的方法:
require(data.table)
setDT(dt)[, Seq:=1:.N, by=IDPath]
# or, as mentioned by @DavidArenburg
setDT(dt)[, Seq:=seq_len(.N), by=IDPath]
dt
# IDPath LogTime Seq
#1: AADS 19-06-2015 01:57 1
#2: AADS 19-06-2015 01:55 2
#3: AADS 19-06-2015 01:54 3
#4: AADS 19-06-2015 01:53 4
#5: DHSD 19-06-2015 12:57 1
#6: DHSD 19-06-2015 10:58 2
#7: DHSD 19-06-2015 09:08 3
#8: DHSD 19-06-2015 08:41 4
答案 1 :(得分:4)
您还可以使用rleid
包中的data.table
函数,该函数专门用于在分组操作中生成游程长度类型ID列:
library(data.table)
setDT(df)[, Seq := rleid(LogTime), by=IDPath]
给出:
> df IDPath LogTime Seq 1: AADS 19-06-2015:01:57 1 2: AADS 19-06-2015:01:55 2 3: AADS 19-06-2015:01:54 3 4: AADS 19-06-2015:01:53 4 5: DHSD 19-06-2015:12:57 1 6: DHSD 19-06-2015:10:58 2 7: DHSD 19-06-2015:09:08 3 8: DHSD 19-06-2015:08:41 4
另一种选择是使用rowid
函数:
setDT(df)[, Seq := rowid(IDPath)]
答案 2 :(得分:3)
强制性的Hadleyverse答案(Hadleyvese回答后也包括基础R答案):
library(dplyr)
dat <- read.table(text="IDPath LogTime
AADS '19-06-2015 01:57'
AADS '19-06-2015 01:55'
AADS '19-06-2015 01:54'
AADS '19-06-2015 01:53'
DHSD '19-06-2015 12:57'
DHSD '19-06-2015 10:58'
DHSD '19-06-2015 09:08'
DHSD '19-06-2015 08:41' ", header=TRUE, stringsAsFactors=FALSE, quote="'")
mutate(group_by(dat, IDPath), Seq=1:n())
或(通过David Arenburg)
mutate(group_by(dat, IDPath), Seq=row_number())
或者如果你正在进行管道:
dat %>%
group_by(IDPath) %>%
mutate(Seq=1:n())
或(通过David Arenburg)
dat %>%
group_by(IDPath) %>%
mutate(Seq=row_number())
强制性基础R回答:
unsplit(lapply(split(dat, dat$IDPath), transform, Seq=1:length(IDPath)), dat$IDPath)
或更具惯用性(再次通过David)
with(dat, ave(IDPath, IDPath, FUN = seq_along))
如果它确实是一个巨大的数据框,那么您可能希望以tbl_dt(dat)
开始dplyr
解决方案,但如果您已经使用data.table
,那么CathG或Jaap的版本会更快}。
答案 3 :(得分:1)
这可能有点冗长,但很简单,
alphabets <- c("a", "a", "b", "c", "c")
df <- data.frame(alphabets)
a <- table(df$alphabets)
k <- 1
for (i in 1:length(a))
{
l <- 1
for(j in 1:a[i])
{
df$seq[k] <- l
k <- k+ 1
l <- l+ 1
}
}
df
# alphabets seq
#1 a 1
#2 a 2
#3 b 1
#4 c 1
#5 c 2