I want to set parameters of SVC using set_params() as shown in the following sample code.
from sklearn.svm import SVC
params = {'C': [.1, 1, 10]}
for k, v in params.items():
for val in v:
clf = SVC().set_params(k=val)
print(clf)
print()
If I run the code, I get the following error:
ValueError: Invalid parameter k for estimator SVC
How can I put the key into set_params() correctly?
答案 0 :(得分:3)
问题实际上是如何使用字符串作为关键字参数。您可以使用set_params
语法构造参数dict并将其传递给**
。
from sklearn.svm import SVC
params = {'C': [.1, 1, 10]}
for k, v in params.items():
for val in v:
clf = SVC().set_params(**{k: val})
print(clf)
print()
输出:
SVC(C=0.1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,
kernel='rbf', max_iter=-1, probability=False, random_state=None,
shrinking=True, tol=0.001, verbose=False)
SVC(C=1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,
kernel='rbf', max_iter=-1, probability=False, random_state=None,
shrinking=True, tol=0.001, verbose=False)
SVC(C=10, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,
kernel='rbf', max_iter=-1, probability=False, random_state=None,
shrinking=True, tol=0.001, verbose=False)
答案 1 :(得分:2)
虽然之前的答案运行正常但是也可以使用多个参数覆盖案例。在这种情况下,sklearn还有一个很好的便利功能来创建参数网格,使其更具可读性。
from sklearn.model_selection import ParameterGrid
from sklearn.svm import SVC
param_grid = ParameterGrid({'C': [.1, 1, 10], 'gamma':["auto", 0.01]})
for params in param_grid:
svc_clf = SVC(**params)
print (svc_clf)
这给出了类似的结果:
SVC(C=0.1, cache_size=200, class_weight=None, coef0=0.0,In [235]:
decision_function_shape=None, degree=3, gamma='auto', kernel='rbf',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)
SVC(C=0.1, cache_size=200, class_weight=None, coef0=0.0,
decision_function_shape=None, degree=3, gamma=0.01, kernel='rbf',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)
SVC(C=1, cache_size=200, class_weight=None, coef0=0.0,
decision_function_shape=None, degree=3, gamma='auto', kernel='rbf',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)
SVC(C=1, cache_size=200, class_weight=None, coef0=0.0,
decision_function_shape=None, degree=3, gamma=0.01, kernel='rbf',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)
SVC(C=10, cache_size=200, class_weight=None, coef0=0.0,
decision_function_shape=None, degree=3, gamma='auto', kernel='rbf',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)
SVC(C=10, cache_size=200, class_weight=None, coef0=0.0,
decision_function_shape=None, degree=3, gamma=0.01, kernel='rbf',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)
答案 2 :(得分:0)
您可以使用许多超参数来实现
from sklearn.svm import SVC
params = {'C': [.1, 1, 10], 'gamma':["auto", 0.01],'tol':[0.001,0.003]}
for k, v in params.items():
For val in v:
clf = SVC().set_params(**{k: val})
print(clf)
print()