我正在使用C ++模拟涉及几个(27)刚性常微分方程的生物模型。我的程序在MS C ++ 2010表达式编译器下运行完美,但在g ++编译器(NetBeans 6.8,Ubuntu 10.04 LTS)下失败。问题是某些变量变为NaN。以下是在g ++编译器下程序的每个步骤之后的变量Vm
的值:
-59.4 -59.3993 -59.6081 100.081 34.6378 -50392.8 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan纳米南纳米南纳米南南纳南南南南南南南南南南南南南南
这是MS C ++编译器下相同代码的输出,没有任何变化:
-59.4 -59.3993 -59.3986 -59.3979 -59.3972 -59.3966 -59.3959 -59.3952 -59.3946 -59.3939 -59.3933 -59.3926 -59.392 -59.3914 -59.3907 -59.3901 -59.3895 -59.3889 -59.3883 -59.3877 -59.3871 -59.3865 -59.3859 -59.3853 -59.3847 -59.3841 -59.3836 -59.383 -59.3824 -59.3819 -59.3813 -59.3808 -59.3802 -59.3797 -59.3791 -59.3786 -59.3781 -59.3775 -59.377 -
我只使用了“cmath”和“fstream”库。
问题出在哪里?两种情况下的代码完全相同。
编辑1:
好的伙计们,这是完整的代码:
#include <iostream>
#include <fstream>
#include <cmath>
using namespace std;
void FCN(void);
const int TMAX = 10000; //[ms] simulation time
const int TSTEP = 1;
const int MXSTEP = TMAX / TSTEP;
int ISTEPPRINT = MXSTEP / 5000; //time step for storing on disc
int ISTEP = 0;
const double R = 8341.0;
const double temp = 293.0;
const double F = 96487.0;
const double RT_F = R*temp / F;
const double z_K = 1;
const double z_Na = 1;
const double z_Ca = 2;
const double z_Cl = -1;
const double N_Av = 6.022e23;
double Ca_o = 2.0;
double Na_o = 140.0;
double Cl_o = 129.0;
double K_o = 5;
double NE = 0;
double NO = 0;
double cGMP = 0; //[mM] [cGMP]i
double cGMPprime = 0; //var
double IP3 = 0; //[mM] [IP3]i
double IP3d = 0; //var
double IP3prime = 0; //var
double DAG = 0; //[mM]
double DAGprime = 0; //var
double Ca_u = 0.66;
double Ca_r = 0.57;
double Ca_i = 68e-6;
double Na_i = 8.4;
double K_i = 140;
double Cl_i = 59.4;
double V_m = -59.4;
double V_mprime;
double Na_iprime;
double K_iprime;
double Cl_iprime;
double Ca_iprime;
double vol_i = 1;
double I_Natotm;
double I_Ktotm;
double I_Cltotm;
double I_Catotm; //[pA] total membrane Ca current
//Reversal potentials
double E_Ca; //[mV]
double E_Na; //[mV]
double E_K; //[mV]
double E_Cl;
//Membrane capacitance and area
double C_m = 25.0;
double A_m = C_m / 1e6;
//Voltage dependent calcium current I_CaL
double I_CaL;
double P_CaL = 1.88e-5;
double d_L;
double d_Lprime;
double d_Lbar;
double tau_d_L;
double f_L;
double f_Lbar;
double tau_f_L;
double f_Lprime;
//Delayed rectifier current I_K
double I_K;
double g_K = 1.35;
double p_K;
double p_Kbar;
double V_1_2 = -11.0;
double k = 15.0;
double tau_p_K;
double p_Kprime;
double q_1 = 1;
double q_2 = 1;
double q_bar;
double q_1prime;
double q_2prime;
double Pmin_NSC = 0.4344;
double Po_NSC;
double PNa_NSC = (5.11e-7);
double PCa_NSC = (5.11e-7)*4.54;
double PK_NSC = (5.11e-7)*1.06; //
double d_NSCmin = 0.0244;
double K_NSC = 3.0e-3;
double INa_NSC;
double ICa_NSC;
double IK_NSC;
double I_NSC;
//KATP current I_KATP
double I_KATP; //[pA] background K current
double g_KATP = 0.067; //[nS] max. background K current conductance
//Inward rectifier current I_K_i
double I_K_i; //[pA]
double g_maxK_i; //[nS] max. slope conductance
const double G_K_i = 0; // inward rectifier constant
const double n_K_i = 0.5; // inward rectifier constant
//Calcium-activated potassium current I_KCa
double I_KCa;
double i1_KCa;
double P_BKCa = 3.9e-13;
double N_BKCa = 6.6e6;
double P_KCa;
double p_obar;
double V_1_2_KCa;
double p_f;
double p_s;
double p_fprime;
double p_sprime;
double tau_pf = 0.84;
double tau_ps = 35.9;
double dV_1_2_KCa_NO = 46.3;
double R_NO;
double dV_1_2_KCa_cGMP = 76;
double R_cGMP;
double k_leak = 1;
double R_00;
double R_01 = 0.9955;
double R_10 = 0.0033;
double R_11 = 4.0e-6;
double R_01prime;
double R_10prime;
double R_11prime;
const double Kr1 = 2500.0;
const double Kr2 = 1.05;
const double K_r1 = 0.0076;
const double K_r2 = 0.084;
double I_up;
const double I_upbar = 3.34 * (k_leak + 1);
const double K_mup = 0.001;
double I_tr;
const double vol_u = 0.07;
double tau_tr = 1000.0;
double I_rel;
const double vol_r = 0.007;
const double tau_rel = 0.0333; //[ms]
const double R_leak = 1.07e-5 * (k_leak); ////equal to R_10^2 during concentration clamp
// time constant of SR release
double Ca_uprime; // dCa_u/dt
double Ca_rprime; // dCa_r/dt
double S_CM;
const double K_d = 2.6e-4;
const double S_CMbar = 0.1;
double CaCM;
const double K_dB = 5.298e-4;
const double B_Fbar = 0.1;
const double vol_Ca = 0.7;
const double CSQNbar = 15;
const double K_CSQN = 0.8;
double I_PMCA;
double I_PMCAbar = 5.37;
double K_mPMCA = 170e-6;
double I_NaK; ////[pA] Na/K pump
double I_NaKbar = 2.3083;
const double K_mK = 1.6;
const double K_mNa = 22;
const double Q_10_NaK = 1.87;
double I_NCX;
const double gamma2 = 0.45; //
double g_NCX = 0.000487; //[nS]
double d_NCX = 0.0003; //
double Fi_F; //
double Fi_R; //
double I_NaKCl_Cl; //[pA]
double L_cotr = 1.79e-8;
double I_M = 0; //[pA]
double I_MCa = 0;
double I_MNa = 0; //[pA] Na component
double I_MK = 0;
double I_SOC; //[pA]
double I_SOCCa;
double I_SOCNa; //[pA] Na component
const double g_SOCCa = 0.0083; //[nS]
const double g_SOCNa = 0.0575; //[nS]
const double H_SOC = 1;
const double K_SOC = 0.0001;
const double tau_SOC = 100;
double P_SOCbar;
double P_SOC = 0;
double P_SOCprime;
//Chloride currents
double I_Cl;
double g_Cl = 0.23;
double alpha_Cl;
double P_Cl;
//Stimulation current
double I_stim = 0; //[pA]
//IP3 receptor
double I_IP3;
double I_IP3bar = 2880e-6; //[1/ms]
double K_IP3 = 0.12e-3;
double K_actIP3 = 0.17e-3;
double K_inhIP3 = 0.1e-3; //[mM]
double h_IP3;
double k_onIP3 = 1.4;
double h_IP3prime;
double R_TG = 2e4;
double K_1G = 0.01;
double K_2G = 0.2;
double k_rG = 1.75e-7;
double k_pG = 0.1e-3;
double k_eG = 6e-6;
double ksi_G = 0.85;
double G_TG = 1e5;
double k_degG = 1.25e-3;
double k_aG = 0.17e-3;
double k_dG = 1.5e-3;
double PIP2_T = 5e7;
double r_rG = 0.015e-3;
double K_cG = 0.4e-3;
double alpha_G = 2.781e-8;
double vol_IP3 = vol_i;
double gamma_G = N_Av*vol_IP3 * 1e-15;
double RS_G = R_TG*ksi_G;
double RS_PG = 0;
double PIP2; //
double r_hG;
double G;
double delta_G; //
double RS_Gprime;
double RS_PGprime;
double Gprime;
double PIP2prime;
double rho_rG;
//cGMP formation
double k1sGC = 2e3; //[1/mM/ms]
double k_1sGC = 15e-3; //[1/ms]
double k2sGC = 0.64e-5; //[1/ms]
double k_2sGC = 0.1e-6; //[1/ms]
double k3sGC = 4.2; //[1/mM/ms]
double kDsGC = 0.4e-3;
double kDact_deactsGC = 0.1e-3; //[1/ms]
double V_cGMP = 0; //
double V_cGMPprime;
double V_cGMPmax = 0.1 * 1.26e-6; //[mM/ms]
double V_cGMPbar;
double B5sGC = k2sGC / k3sGC;
double A0sGC = ((k_1sGC + k2sGC) * kDsGC + k_1sGC*k_2sGC) / (k1sGC*k3sGC);
double A1sGC = ((k1sGC + k3sGC) * kDsGC + (k2sGC + k_2sGC) * k1sGC) / (k1sGC*k3sGC);
double kpde_cGMP = 0.0695e-3; //[1/ms]
double tausGC;
const int N = 27;
double Y[N], Y1[N], YPRIME[N];
int N1 = 33;
double T = 0;
int main(void) {
ofstream fileY, fileY1, fileT;
// initial conditions SMC
//ICaL
d_Lbar = 1.0 / (1 + exp(-(V_m) / 8.3));
d_L = d_Lbar;
f_Lbar = 1.0 / (1 + exp((V_m + 42.0) / 9.1));
f_L = f_Lbar;
//IKCa
R_NO = NO / (NO + 200e-6);
R_cGMP = pow(cGMP, 2) / (pow(cGMP, 2) + pow(0.55e-3, 2));
V_1_2_KCa = -41.7 * log10(Ca_i) - 128.2 - dV_1_2_KCa_NO * R_NO - dV_1_2_KCa_cGMP*R_cGMP;
p_obar = 1 / (1 + exp(-(V_m - V_1_2_KCa) / 18.25));
p_f = p_obar;
p_s = p_obar;
//I_K
p_Kbar = 1 / (1 + exp(-(V_m - V_1_2) / k));
p_K = p_Kbar;
q_bar = 1.0 / (1 + exp((V_m + 40) / 14));
q_1 = q_bar;
q_2 = q_bar;
//IP3 receptor
h_IP3 = K_inhIP3 / (Ca_i + K_inhIP3);
//norepinephrine receptor
PIP2 = PIP2_T - (1 + k_degG / r_rG) * gamma_G*IP3;
r_hG = k_degG * gamma_G * IP3 / PIP2;
G = (K_cG + Ca_i) / (alpha_G * Ca_i) * r_hG;
delta_G = k_dG * G / (k_aG * (G_TG - G));
Y[0] = V_m;
Y[1] = d_L;
Y[2] = f_L;
Y[3] = p_K;
Y[4] = q_1;
Y[5] = p_f;
Y[6] = p_s;
Y[7] = R_01;
Y[8] = R_10;
Y[9] = R_11;
Y[10] = Ca_u;
Y[11] = Ca_r;
Y[12] = Ca_i;
Y[13] = Na_i;
Y[14] = K_i;
Y[15] = q_2;
Y[16] = P_SOC;
Y[17] = Cl_i;
Y[18] = h_IP3;
Y[19] = RS_G;
Y[20] = RS_PG;
Y[21] = G;
Y[22] = IP3;
Y[23] = PIP2;
Y[24] = DAG;
Y[25] = V_cGMP;
Y[26] = cGMP;
ISTEP = -1;
T = 0.0 - TSTEP;
fileY.open("Y.txt");
fileY1.open("Y1.txt");
fileT.open("T.txt");
for (;;) {
ISTEP = ISTEP + 1;
T = T + TSTEP;
//Norepinephrine
if (T > 10000) NE = 1e-3; //NE [mM] beginning of stimulation
if (T > 70000) NE = 0; //end of stimulation
//Nitric oxide
//IF (T>30000) NO = 1D-3 //NO [mM]
//IF (T>70000) NO = 0
//Extracellular potassium
//IF (T>10000) K_o = 30
//IF (T>70000) K_o = 5
//Current
//IF (T>10000) I_stim = 5 //I_stim [pA] current injection
//IF (T>40000) I_stim = -5
//IF (T>70000) I_stim = 0
// For the time being, I just interested in Y[0] values (which is V_m actually)
fileY << Y[0];
fileY << "\t";
if ((ISTEP % ISTEPPRINT) == 0) {
// for (int i=0; i< N; i++) {
// fileY << Y[i];
// fileY << "\t";
// }
// fileY << endl;
// for (int i=0; i< N1; i++) {
// fileY1 << Y1[i];
// fileY1 << "\t";
// }
// fileY1 << endl;
//
//
//
// fileT << T;
// fileT << "\t";
}
FCN();
for (int i = 0; i < N; i++) {
Y[i] = Y[i] + TSTEP * YPRIME[i];
}
// disp(Yconcat(1))
if (ISTEP == MXSTEP)
break;
}
cout << "It is done!" << endl;
cout << Y[0] << endl;
fileY.close();
fileY1.close();
fileT.close();
return 0;
}
void FCN(void) {
V_m = Y[0];
d_L = Y[1];
f_L = Y[2];
p_K = Y[3];
q_1 = Y[4];
p_f = Y[5];
p_s = Y[6];
R_01 = Y[7];
R_10 = Y[8];
R_11 = Y[9];
Ca_u = Y[10];
Ca_r = Y[11];
Ca_i = Y[12];
Na_i = Y[13];
K_i = Y[14];
q_2 = Y[15];
P_SOC = Y[16];
Cl_i = Y[17];
h_IP3 = Y[18];
RS_G = Y[19];
RS_PG = Y[20];
G = Y[21];
IP3 = Y[22];
PIP2 = Y[23];
DAG = Y[24];
V_cGMP = Y[25];
cGMP = Y[26];
//-------------------------------------- Model equations ---------------------------------------------
//cGMP formation
V_cGMPbar = V_cGMPmax * (B5sGC * NO + pow(NO, 2)) / (A0sGC + A1sGC * NO + pow(NO, 2));
if ((V_cGMPbar - V_cGMP) >= 0) {
tausGC = 1 / (k3sGC * NO + kDact_deactsGC); //kDact_deactsGC different from original kDsGC to uncouple Km from time constants
} else {
tausGC = 1 / (kDact_deactsGC + k_2sGC);
}
V_cGMPprime = (V_cGMPbar - V_cGMP) / tausGC;
cGMPprime = V_cGMP - kpde_cGMP * cGMP * cGMP / (1e-3 + cGMP);
//Norepinephrine receptor
RS_Gprime = (k_rG * ksi_G * R_TG - (k_rG + k_pG * NE / (K_1G + NE)) * RS_G - k_rG * RS_PG);
RS_PGprime = NE * (k_pG * RS_G / (K_1G + NE) - k_eG * RS_PG / (K_2G + NE));
rho_rG = NE * RS_G / (ksi_G * R_TG * (K_1G + NE));
Gprime = k_aG * (delta_G + rho_rG)*(G_TG - G) - k_dG*G;
r_hG = alpha_G * Ca_i / (K_cG + Ca_i) * G;
IP3prime = r_hG / gamma_G * PIP2 - k_degG*IP3;
PIP2prime = -(r_hG + r_rG) * PIP2 - r_rG * gamma_G * IP3 + r_rG*PIP2_T;
DAGprime = r_hG / gamma_G * PIP2 - k_degG*DAG;
//Reversal potentials
E_Ca = RT_F / z_Ca * log(Ca_o / Ca_i);
E_Na = RT_F * log(Na_o / Na_i);
E_K = RT_F * log(K_o / K_i);
E_Cl = RT_F / z_Cl * log(Cl_o / Cl_i);
//Voltage dependent calcium current I_CaL
tau_d_L = 2.5 * exp(-pow((V_m + 40) / 30, 2)) + 1.15;
d_Lbar = 1.0 / (1 + exp(-(V_m) / 8.3));
d_Lprime = (d_Lbar - d_L) / tau_d_L;
f_Lbar = 1.0 / (1 + exp((V_m + 42.0) / 9.1));
tau_f_L = 65 * exp(-pow((V_m + 35) / 25, 2)) + 45;
f_Lprime = (f_Lbar - f_L) / tau_f_L;
if (V_m == 0) {
I_CaL = d_L * f_L * P_CaL * A_m * 1e6 * z_Ca * F * (Ca_i - Ca_o); //[pA]
} else {
I_CaL = d_L * f_L * P_CaL * A_m * 1e6 * V_m * pow(z_Ca * F, 2) / (R * temp)*(Ca_o - Ca_i * exp(V_m * z_Ca / (RT_F))) / (1 - exp(V_m * z_Ca / (RT_F))); //[pA]
}
//Delayed rectifier current I_K
p_Kbar = 1 / (1 + exp(-(V_m - V_1_2) / k));
tau_p_K = 61.49 * exp(-0.0268 * V_m);
p_Kprime = (p_Kbar - p_K) / tau_p_K;
q_bar = 1.0 / (1 + exp((V_m + 40) / 14));
q_1prime = (q_bar - q_1) / 371;
q_2prime = (q_bar - q_2) / 2884;
I_K = 1 * g_K * p_K * (0.45 * q_1 + 0.55 * q_2) * (V_m - E_K);
//Alpha-adrenoceptor-activated nonselective cation channel NSC
Po_NSC = Pmin_NSC + (1 - Pmin_NSC) / (1 + exp(-(V_m - 47.12) / 24.24));
if (V_m == 0) {
INa_NSC = 1 * (DAG / (DAG + K_NSC) + d_NSCmin) * Po_NSC * PNa_NSC * A_m * 1e6 * F * (Na_i - Na_o);
ICa_NSC = 1 * (0 * DAG / (DAG + K_NSC) + d_NSCmin) * Po_NSC * PCa_NSC * A_m * 1e6 * z_Ca * F * (Ca_i - Ca_o);
IK_NSC = 1 * (DAG / (DAG + K_NSC) + d_NSCmin) * Po_NSC * PK_NSC * A_m * 1e6 * F * (K_i - K_o);
} else {
INa_NSC = 1 * (DAG / (DAG + K_NSC) + d_NSCmin) * Po_NSC * PNa_NSC * A_m * 1e6 * V_m * pow(F, 2) / (R * temp)*(Na_o - Na_i * exp(V_m / RT_F)) / (1 - exp(V_m / RT_F));
ICa_NSC = 1 * (0 * DAG / (DAG + K_NSC) + d_NSCmin) * Po_NSC * PCa_NSC * A_m * 1e6 * V_m * pow(z_Ca * F, 2) / (R * temp)*(Ca_o - Ca_i * exp(V_m * z_Ca / RT_F)) / (1 - exp(V_m * z_Ca / RT_F));
IK_NSC = 1 * (DAG / (DAG + K_NSC) + d_NSCmin) * Po_NSC * PK_NSC * A_m * 1e6 * V_m * pow(F, 2) / (R * temp)*(K_o - K_i * exp(V_m / RT_F)) / (1 - exp(V_m / RT_F));
}
I_NSC = ICa_NSC + INa_NSC + IK_NSC;
//KATP current I_KATP
I_KATP = g_KATP * (V_m - E_K);
//Inward rectifier current I_K_i
g_maxK_i = G_K_i * pow(K_o, n_K_i);
I_K_i = g_maxK_i * (V_m - E_K) / (1 + exp((V_m - E_K) / 28.89));
//Calcium-activated potassium current I_KCa
if (V_m == 0) {
i1_KCa = 1e6 * P_BKCa * F * (K_i - K_o); //[pA]
} else {
i1_KCa = 1e6 * P_BKCa * V_m * F / RT_F * (K_o - K_i * exp(V_m / RT_F)) / (1 - exp(V_m / RT_F)); //[pA]
} //Mistry and Garland 1998
R_NO = NO / (NO + 200e-6);
R_cGMP = pow(cGMP, 2) / (pow(cGMP, 2) + pow(1.5e-3, 2));
V_1_2_KCa = -41.7 * log10(Ca_i) - 128.2 - dV_1_2_KCa_NO * R_NO - dV_1_2_KCa_cGMP*R_cGMP;
p_obar = 1 / (1 + exp(-(V_m - V_1_2_KCa) / 18.25));
p_fprime = (p_obar - p_f) / tau_pf;
p_sprime = (p_obar - p_s) / tau_ps;
P_KCa = 0.17 * p_f + 0.83 * p_s;
I_KCa = A_m * N_BKCa * i1_KCa * P_KCa;
//Store operated non-selective cation channel
P_SOCbar = 1 / (1 + pow(Ca_u / K_SOC, H_SOC));
P_SOCprime = (P_SOCbar - P_SOC) / tau_SOC;
I_SOCCa = 1 * P_SOC * g_SOCCa * (V_m - E_Ca);
I_SOCNa = 1 * P_SOC * g_SOCNa * (V_m - E_Na);
I_SOC = I_SOCCa + I_SOCNa;
//Chloride currents
alpha_Cl = pow(cGMP, 3.3) / (pow(cGMP, 3.3) + pow(6.4e-3, 3.3));
P_Cl = pow(Ca_i, 2) / (pow(Ca_i, 2) + pow(365e-6, 2)) * 0.0132 + pow(Ca_i, 2) / (pow(Ca_i, 2) + pow(400e-6 * (1 - alpha_Cl * 0.9), 2)) * alpha_Cl;
I_Cl = P_Cl * g_Cl * C_m * (V_m - E_Cl);
//IP3 receptor current
h_IP3prime = k_onIP3 * (K_inhIP3 - (Ca_i + K_inhIP3) * h_IP3);
I_IP3 = I_IP3bar * pow(IP3 / (IP3 + K_IP3) * Ca_i / (Ca_i + K_actIP3) * h_IP3, 3)*(Ca_u - Ca_i) * z_Ca * F*vol_Ca;
//Calcium-induced calcium release
R_00 = 1 - R_01 - R_10 - R_11;
R_10prime = Kr1 * pow(Ca_i, 2) * R_00 - (K_r1 + Kr2 * Ca_i) * R_10 + K_r2*R_11;
R_11prime = Kr2 * Ca_i * R_10 - (K_r1 + K_r2) * R_11 + Kr1 * pow(Ca_i, 2) * R_01;
R_01prime = Kr2 * Ca_i * R_00 + K_r1 * R_11 - (K_r2 + Kr1 * pow(Ca_i, 2)) * R_01;
I_up = I_upbar * Ca_i / (Ca_i + K_mup);
I_tr = (Ca_u - Ca_r) * (2 * F * vol_u) / tau_tr;
I_rel = (pow(R_10, 2) + R_leak) * (Ca_r - Ca_i) * (2 * F * vol_r) / tau_rel;
Ca_uprime = (I_up - I_tr - I_IP3) / (2 * F * vol_u);
Ca_rprime = (I_tr - I_rel) / (2 * F * vol_r) / (1 + CSQNbar * K_CSQN / pow((K_CSQN + Ca_r), 2));
//Ca buffering and cytosolic material balance
S_CM = S_CMbar * K_d / (K_d + Ca_i);
CaCM = S_CMbar - S_CM;
I_PMCA = I_PMCAbar * Ca_i / (Ca_i + K_mPMCA);
//NaK pump
I_NaK = pow(Q_10_NaK, ((temp - 309.15) / 10)) * C_m * I_NaKbar * ((pow(K_o, 1.1)) / (pow(K_o, 1.1) + (pow(K_mK, 1.1)))
*(pow(Na_i, 1.7)) / ((pow(Na_i, 1.7))+(pow(K_mNa, 1.7)))) *(V_m + 150) / (V_m + 200);
Fi_F = exp(gamma2 * V_m * F / (R * temp));
Fi_R = exp((gamma2 - 1) * V_m * F / (R * temp));
I_NCX = 1 * (1 + 0.55 * cGMP / (cGMP + (45e-3))) * g_NCX * (pow(Na_i, 3) * Ca_o * Fi_F - pow(Na_o, 3) * Ca_i * Fi_R) / (1 + d_NCX * (pow(Na_o, 3) * Ca_i + pow(Na_i, 3) * Ca_o));
I_NaKCl_Cl = (1 + 7 / 2 * cGMP / (cGMP + 6.4e-3))*(-A_m * L_cotr * R * temp * z_Cl * F * log(Na_o / Na_i * K_o / K_i * pow(Cl_o / Cl_i, 2)));
I_Catotm = I_SOCCa + I_CaL - 2 * I_NCX + I_PMCA + ICa_NSC + I_MCa;
Ca_iprime = -(I_Catotm + I_up - I_rel - I_IP3) / (2 * F * vol_Ca) / (1 + S_CMbar * K_d / (pow(K_d + Ca_i, 2)) + B_Fbar * K_dB / (pow(K_dB + Ca_i, 2)));
I_Natotm = -0.5 * I_NaKCl_Cl + I_SOCNa + 3 * I_NaK + 3 * I_NCX + INa_NSC + I_MNa;
Na_iprime = -(I_Natotm) / (F * vol_i);
I_Ktotm = -0.5 * I_NaKCl_Cl + I_K + I_KCa + I_K_i + IK_NSC + I_KATP - 2 * I_NaK + I_MK;
K_iprime = -(I_Ktotm) / (F * vol_i);
I_Cltotm = I_NaKCl_Cl + I_Cl;
Cl_iprime = -(I_Cltotm) / (z_Cl * F * vol_i);
//Transmembrane potential
V_mprime = -1 / C_m * (-I_stim + I_Cl + I_SOC + I_CaL + I_K + I_KCa + I_K_i + I_M + I_NCX + I_NaK + I_PMCA + I_NSC + I_KATP);
//YPRIME = zeros(1, N);
YPRIME[0] = V_mprime;
YPRIME[1] = d_Lprime;
YPRIME[2] = f_Lprime;
YPRIME[3] = p_Kprime;
YPRIME[4] = q_1prime;
YPRIME[5] = p_fprime;
YPRIME[6] = p_sprime;
YPRIME[7] = R_01prime;
YPRIME[8] = R_10prime;
YPRIME[9] = R_11prime;
YPRIME[10] = Ca_uprime;
YPRIME[11] = Ca_rprime;
YPRIME[12] = Ca_iprime;
YPRIME[13] = Na_iprime;
YPRIME[14] = K_iprime;
YPRIME[15] = q_2prime;
YPRIME[16] = P_SOCprime;
YPRIME[17] = Cl_iprime;
YPRIME[18] = h_IP3prime;
YPRIME[19] = RS_Gprime;
YPRIME[20] = RS_PGprime;
YPRIME[21] = Gprime;
YPRIME[22] = IP3prime;
YPRIME[23] = PIP2prime;
YPRIME[24] = DAGprime;
YPRIME[25] = V_cGMPprime;
YPRIME[26] = cGMPprime;
//Non state variables
Y1[0] = I_CaL;
Y1[1] = I_K;
Y1[2] = I_K_i;
Y1[3] = I_NSC;
Y1[4] = I_KCa;
Y1[5] = I_up;
Y1[6] = I_rel;
Y1[7] = I_PMCA;
Y1[8] = I_NCX;
Y1[9] = I_NaK;
Y1[10] = INa_NSC;
Y1[11] = ICa_NSC;
Y1[12] = IK_NSC;
Y1[13] = I_SOCCa;
Y1[14] = I_SOCNa;
Y1[15] = I_Cl;
Y1[16] = I_NaKCl_Cl;
Y1[17] = I_IP3;
Y1[18] = I_tr;
Y1[19] = NE;
Y1[20] = I_KATP;
Y1[21] = I_stim;
Y1[22] = V_cGMPbar;
Y1[23] = NO;
Y1[29] = I_Catotm;
Y1[30] = I_Natotm;
Y1[31] = I_Cltotm;
Y1[32] = I_Ktotm;
}
答案 0 :(得分:6)
Windows和Linux设置了不同的浮点默认值。 &LT; fenv.h&GT;可以通过允许代码抛出而不是默默地帮助你来帮助你调试它。有一些特定于Windows的API可以控制FPU的配置,我认为默认情况下它们不符合IEEE-754标准。
在Windows上,如果您想在IEEE-754标准模式下操作,则需要致电_controlfp
。
有关this page的更多详情。
答案 1 :(得分:6)
我怀疑你的代码正在给你一个MS C编译器的答案,但我怀疑它运行得很好。 NaNs(非数字)是计算功能超出其范围的结果。既然你没有提到你是如何解决你的僵硬系统的,我不知道你是否正在记录负数或其他一些松鼠算法,但我确信你在windows代码中进行相同的算术运算。仅仅因为代码试图混淆并不意味着它正在正常运行。
我建议您开始查看两个程序开始分歧的位置,并且在g ++返回NaN的情况下,您可能会发现MS编译器返回0或Inf的可疑操作。
答案 2 :(得分:4)
答案 3 :(得分:0)