如何在长度为n的列表中生成长度为k的循环移位的所有排列。这里的转变是循环的,正确的。请注意:
如果K == 1,则没有转变。因此,没有那些0班次的排列 如果K == 2,这相当于交换元素。所以n!可以生成排列。
例如。如果列表是[1 4 2],则K = 2(因此从0到N-K,循环)
P1: [1,4,2] #Original list. No shift.
P2: [4,1,2] #Shift from 0 of [1,4,2]
P3: [4,2,1] #Shift from 1 of [4,1,2] as 0 gives P1
P4: [2,4,1] #Shift from 0 of [4,2,1]
P5: [2,1,4] #Shift from 1 of [1,4,2] as 0 of P4=P3
P6: [1,2,4] #Shift from 0 of [2,1,4]
如果K == 3,事情变得有趣,因为遗漏了一些排列。
例如。如果list = [1,3,4,2],K = 3(因此从索引0到4-3,循环)
P1 : [1,3,4,2] #Original list. No shift.
P2 : [4,1,3,2] #Shift from 0th of [1,3,4,2]
P3 : [3,4,1,2] #Shift from 0th of [4,1,3,2]
P4 : [3,2,4,1] #Shift from 1th of [3,4,1,2] as 0th gives P1
P5 : [4,3,2,1] #Shift from 0th of [3,2,4,1]
P6 : [2,4,3,1] #Shift from 0th of [4,3,2,1]
P7 : [2,1,4,3] #Shift from 1th of [2,4,3,1] as 0th gives P3
P8 : [4,2,1,3] #Shift from 0th of [2,1,4,3]
P9 : [1,4,2,3] #Shift from 0th of [4,2,1,3]
P10: [2,3,1,4] #Shift from 1th of [2,1,4,3] as 0 from P9=P7,1 from P9=P1,1 from P8=P5
P11: [1,2,3,4] #Shift from 0th of [2,3,1,4]
P12: [3,1,2,4] #Shift from 0th of [1,2,3,4]
#Now,all have been generated, as moving further will lead to previously found values.
请注意,这些排列是应该(24)的一半()。 为了实现这个算法,我目前正在使用回溯。这是我到目前为止所尝试的(在Python中)
def get_possible_cyclic(P,N,K,stored_perms): #P is the original list
from collections import deque
if P in stored_perms:
return #Backtracking to the previous
stored_perms.append(P)
for start in xrange(N-K+1):
"""
Shifts cannot wrap around. Eg. 1,2,3,4 ,K=3
Recur for (1,2,3),4 or 1,(2,3,4) where () denotes the cycle
"""
l0=P[:start] #Get all elements that are before cycle ranges
l1=deque(P[start:K+start]) #Get the elements we want in cycle
l1.rotate() #Form their cycle
l2=P[K+start:] #Get all elements after cycle ranges
l=l0+list(l1)+l2 #Form the required list
get_possible_cyclic(l,N,K,stored_perms)
for index,i in enumerate(stored_perms):
print i,index+1
get_possible_cyclic([1,3,4,2],4,3,[])
get_possible_cyclic([1,4,2],3,2,[])
这会产生输出
[1, 3, 4, 2] 1
[4, 1, 3, 2] 2
[3, 4, 1, 2] 3
[3, 2, 4, 1] 4
[4, 3, 2, 1] 5
[2, 4, 3, 1] 6
[2, 1, 4, 3] 7
[4, 2, 1, 3] 8
[1, 4, 2, 3] 9
[2, 3, 1, 4] 10
[1, 2, 3, 4] 11
[3, 1 ,2, 4] 12
[1, 4, 2] 1
[4, 1, 2] 2
[4, 2, 1] 3
[2, 4, 1] 4
[2, 1, 4] 5
[1, 2, 4] 6
这正是我想要的,但速度要慢得多,因为这里递归深度超过N> 7。我希望,我已经清楚地解释了自己。有没有优化的人?
答案 0 :(得分:1)
支票
if P in stored_perms:
随着stored_perms
的增长,变得越来越慢,因为它需要一次比较 使用set效率更高。 Python的集合基于散列表,因此成员资格检查通常是O(1)而不是O(N)。但是,有一些限制: 添加到集合中的元素需要为hashable,并且Python列表不可清除。幸运的是,元组是可以清除的,所以一个小小的改动可以解决这个问题。 对一个集合进行迭代是不可预测的。特别是,在迭代它时,您无法可靠地修改集。 除了将P更改为元组和stored_perms到集合之外,考虑基于工作队列而不是递归搜索的搜索也是值得的。我不知道它是否会更快,但它避免了递归深度的任何问题。 把所有这些放在一起,我把以下内容放在一起:P
和stored_perms
的元素,直到找到副本或列表的结尾为止遇到了。由于每个排列都会被添加到stored_perms
一次,因此与P
进行比较的次数至少是找到的排列数的二次方,这通常是所有可能的排列或其中的一半,具体取决于关于k是偶数还是奇数(假设1
def get_cyclics(p, k):
found = set() # set of tuples we have seen so far
todo = [tuple(p)] # list of tuples we still need to explore
n = len(p)
while todo:
x = todo.pop()
for i in range(n - k + 1):
perm = ( x[:i] # Prefix
+ x[i+1:i+k] + x[i:i+1] # Rotated middle
+ x[i+k:] # Suffix
)
if perm not in found:
found.add(perm)
todo.append(perm)
for x in found:
print(x)