为什么这个方法会在参数个数方面产生错误?

时间:2015-10-05 16:00:54

标签: python machine-learning neural-network theano deep-learning

我有以下代码,当我运行 theano_build ()方法时,它会抛出错误说

  File "rnn_theano.py", line 28, in __init__
self.__theano_build__()

  File "rnn_theano.py", line 45, in __theano_build__
non_sequences=[U, V, W1, W12, W2],

  File "/usr/local/lib/python2.7/dist-packages/theano/scan_module/scan.py", line 745, in scan
condition, outputs, updates =     scan_utils.get_updates_and_outputs(fn(*args))

TypeError: forward_prop_step() takes exactly 8 arguments (7 given)

以下是Theano中的代码。它基本上是一个两个隐藏的分层递归神经网络

import numpy as np
import theano as theano
import theano.tensor as T
from utils import *
import operator

class RNNTheano:
    def __init__(self, word_dim, hidden_dim=100, bptt_truncate=4):
        # Assign instance variables
        self.word_dim = word_dim
        self.hidden_dim = hidden_dim
        self.bptt_truncate = bptt_truncate
        # Randomly initialize the network parameters
        U = np.random.uniform(-np.sqrt(1./word_dim), np.sqrt(1./word_dim), (hidden_dim, word_dim))
        V = np.random.uniform(-np.sqrt(1./hidden_dim), np.sqrt(1./hidden_dim), (word_dim, hidden_dim))
        W1 = np.random.uniform(-np.sqrt(1./hidden_dim), np.sqrt(1./hidden_dim), (hidden_dim, hidden_dim))
        W12 = np.random.uniform(-np.sqrt(1./hidden_dim), np.sqrt(1./hidden_dim), (hidden_dim, hidden_dim))
        W2 = np.random.uniform(-np.sqrt(1./hidden_dim), np.sqrt(1./hidden_dim), (hidden_dim, hidden_dim))
        # Theano: Created shared variables
        self.U = theano.shared(name='U', value=U.astype(theano.config.floatX))
        self.V = theano.shared(name='V', value=V.astype(theano.config.floatX))
        self.W1 = theano.shared(name='W1', value=W1.astype(theano.config.floatX))      
        self.W12 = theano.shared(name='W12', value=W12.astype(theano.config.floatX))      
        self.W2 = theano.shared(name='W2', value=W2.astype(theano.config.floatX))
        # We store the Theano graph here
        self.theano = {}
        self.__theano_build__()

    def forward_prop_step(self, x_t, s_t1_prev, s_t2_prev, U, V, W1, W12, W2):
        s_t1 = T.tanh(U[:,x_t] + W1.dot(s_t1_prev))
        s_t2 = T.tanh(W12.dot(s_t1) + W2.dot(s_t2_prev))
        o_t = T.nnet.softmax(V.dot(s_t2))
        return [o_t[0], s_t1, s_t2]

    def __theano_build__(self):
        U, V, W1, W12, W2 = self.U, self.V, self.W1, self.W12, self.W2
        x = T.ivector('x')
        y = T.ivector('y')

        [o,s1,s2], updates = theano.scan(
            self.forward_prop_step,
            sequences=x,
            outputs_info=[None, dict(initial=T.zeros(self.hidden_dim)), dict(initial=T.zeros(self.hidden_dim))],
            non_sequences=[U, V, W1, W12, W2],
            truncate_gradient=self.bptt_truncate,
            strict=False)

        prediction = T.argmax(o, axis=1)
        o_error = T.sum(T.nnet.categorical_crossentropy(o, y))

        # Gradients
        dU = T.grad(o_error, U)
        dV = T.grad(o_error, V)
        dW1 = T.grad(o_error, W1)
        dW12 = T.grad(o_error, W12)
        dW2 = T.grad(o_error, W2)

        # Assign functions
        self.forward_propagation = theano.function([x], o)
        self.predict = theano.function([x], prediction)
        self.ce_error = theano.function([x, y], o_error)
        self.bptt = theano.function([x, y], [dU, dV, dW1, dW12, dW2])

        # SGD
        learning_rate = T.scalar('learning_rate')
        self.sgd_step = theano.function([x,y,learning_rate], [], 
                      updates=[(self.U, self.U - learning_rate * dU),
                              (self.V, self.V - learning_rate * dV),
                              (self.W1, self.W1 - learning_rate * dW1)
                              (self.W12, self.W12 - learning_rate * dW12),
                              (self.W2, self.W2 - learning_rate * dW2)])

    def calculate_total_loss(self, X, Y):
        return np.sum([self.ce_error(x,y) for x,y in zip(X,Y)])

    def calculate_loss(self, X, Y):
        # Divide calculate_loss by the number of words
        num_words = np.sum([len(y) for y in Y])
        return self.calculate_total_loss(X,Y)/float(num_words)

1 个答案:

答案 0 :(得分:2)

尝试更改

return [o_t[0], s_t1, s_t2]

return o_t[0], s_t1, s_t2

我认为前者导致该方法将Theano强制转换为单个张量,而后者明确返回三个对象,如outputs_info所示。