fastmatch包为重复匹配(例如在循环中)实现了更快的match
版本:
set.seed(1)
library(fastmatch)
table <- 1L:100000L
x <- sample(table, 10000, replace=TRUE)
system.time(for(i in 1:100) a <- match(x, table))
system.time(for(i in 1:100) b <- fmatch(x, table))
identical(a, b)
%in%
是否有类似的实现可以用来加速重复查找?
答案 0 :(得分:29)
查看%in%
:
R> `%in%`
function (x, table)
match(x, table, nomatch = 0L) > 0L
<bytecode: 0x1fab7a8>
<environment: namespace:base>
您可以轻松编写自己的%fin%
函数:
`%fin%` <- function(x, table) {
stopifnot(require(fastmatch))
fmatch(x, table, nomatch = 0L) > 0L
}
system.time(for(i in 1:100) a <- x %in% table)
# user system elapsed
# 1.780 0.000 1.782
system.time(for(i in 1:100) b <- x %fin% table)
# user system elapsed
# 0.052 0.000 0.054
identical(a, b)
# [1] TRUE
答案 1 :(得分:3)
匹配几乎总是通过将两个向量放在数据帧和合并中来完成(参见dplyr的各种连接)
例如,类似这样的内容可以为您提供所需的所有信息:
library(dplyr)
data = data_frame(data.ID = 1L:100000L,
data.extra = 1:2)
sample =
data %>%
sample_n(10000, replace=TRUE) %>%
mutate(sample.ID = 1:n(),
sample.extra = 3:4 )
# join table not strictly necessary in this case
# but necessary in many-to-many matches
data__sample = inner_join(data, sample)
#check whether a data.ID made it into sample
data__sample %>% filter(data.ID == 1)
或left_join,right_join,full_join,semi_join,anti_join,具体取决于对您最有用的信息