我正在尝试使用这些快速排序方法来确定发生了多少比较。我们给出了一个执行计数的全局变量,但是当我们交给它时我们无法使用全局变量。相反,我们需要递归计算比较。现在我想弄清楚如何做到这一点,我不是在寻找答案,我正在努力找到解决这个问题的正确步骤。我现在已经尝试了几个小时但没有运气。
static int qSortCompares = 0; // GLOBAL var declaration
/**
* The swap method swaps the contents of two elements in an int array.
*
* @param The array containing the two elements.
* @param a The subscript of the first element.
* @param b The subscript of the second element.
*/
private static void swap(int[] array, int a, int b) {
int temp;
temp = array[a];
array[a] = array[b];
array[b] = temp;
}
public static void quickSort(int array[]) {
qSortCompares = 0;
int qSCount = 0;
doQuickSort(array, 0, array.length - 1);
}
/**
* The doQuickSort method uses the QuickSort algorithm to sort an int array.
*
* @param array The array to sort.
* @param start The starting subscript of the list to sort
* @param end The ending subscript of the list to sort
*/
private static int doQuickSort(int array[], int start, int end) {
int pivotPoint;
int qSTotal = 0;
if (start < end) {
// Get the pivot point.
pivotPoint = partition(array, start, end);
// Note - only one +/=
// Sort the first sub list.
doQuickSort(array, start, pivotPoint - 1);
// Sort the second sub list.
doQuickSort(array, pivotPoint + 1, end);
}
return qSTotal;
}
/**
* The partition method selects a pivot value in an array and arranges the
* array into two sub lists. All the values less than the pivot will be
* stored in the left sub list and all the values greater than or equal to
* the pivot will be stored in the right sub list.
*
* @param array The array to partition.
* @param start The starting subscript of the area to partition.
* @param end The ending subscript of the area to partition.
* @return The subscript of the pivot value.
*/
private static int partition(int array[], int start, int end) {
int pivotValue; // To hold the pivot value
int endOfLeftList; // Last element in the left sub list.
int mid; // To hold the mid-point subscript
int qSCount = 0;
// see http://www.cs.cmu.edu/~fp/courses/15122-s11/lectures/08-qsort.pdf
// for discussion of middle point - This improves the almost sorted cases
// of using quicksort
// Find the subscript of the middle element.
// This will be our pivot value.
mid = (start + end) / 2;
// Swap the middle element with the first element.
// This moves the pivot value to the start of
// the list.
swap(array, start, mid);
// Save the pivot value for comparisons.
pivotValue = array[start];
// For now, the end of the left sub list is
// the first element.
endOfLeftList = start;
// Scan the entire list and move any values that
// are less than the pivot value to the left
// sub list.
for (int scan = start + 1; scan <= end; scan++) {
qSortCompares++;
qSCount++;
if (array[scan] < pivotValue) {
endOfLeftList++;
// System.out.println("Pivot=" + pivotValue + "=" + endOfLeftList + ":" + scan);
swap(array, endOfLeftList, scan);
}
}
// Move the pivot value to end of the
// left sub list.
swap(array, start, endOfLeftList);
// Return the subscript of the pivot value.
return endOfLeftList;
}
/**
* Print an array to the Console
*
* @param A
*/
public static void printArray(int[] A) {
for (int i = 0; i < A.length; i++) {
System.out.printf("%5d ", A[i]);
}
System.out.println();
}
/**
* @param args the command line arguments
*/
public static void main(String[] args) {
final int SIZE = 10;
int[] A = new int[SIZE];
// Create random array with elements in the range of 0 to SIZE - 1;
System.out.printf("Lab#2 Sorting Algorithm Performance Analysis\n\n");
for (int i = 0; i < SIZE; i++) {
A[i] = (int) (Math.random() * SIZE);
}
System.out.printf("Unsorted Data = %s\n", Arrays.toString(A));
int[] B;
// Measure comparisons and time each of the 4 sorts
B = Arrays.copyOf(A, A.length); // Need to do this before each sort
long startTime = System.nanoTime();
quickSort(B);
long timeRequired = (System.nanoTime() - startTime) / 1000;
System.out.printf("Sorted Data = %s\n", Arrays.toString(B));
System.out.printf("Number of compares for quicksort = %8d time = %8d us Ratio = %6.1f compares/us\n", qSortCompares, timeRequired, qSortCompares / (double) timeRequired);
// Add code for the other sorts here ...
}
说明给出了一些提示,但我仍然迷失了:
quicksort方法目前使用全局变量计算比较次数。这不是一个好的编程技术。修改quicksort方法以通过传递参数来计算比较。由于在分区方法中进行了比较,因此这有点棘手。您应该能够看到在调用分区方法之前可以确定比较次数。您需要从Quicksort方法返回此值,并修改quickSort标头以将此值传递到每个递归调用中。您需要递归添加计数。
作为递归计数的替代方法,您可以保留代码并完成实验,而无需修改。
我一直在看这个赋值的方式我在名为qSCount的分区方法中创建了一个变量,当它被调用时将计算进行了多少次比较。但是我无法使用该变量,因为我没有返回它。而且我不确定如何在该状态下使用递归。我的想法是每次qSCount有一个值后,我可以以某种方式将它存储在qSTotal下的doQuickSort方法中。但后来暗示我需要在quicksort中创建一个参数,所以我很困惑。
答案 0 :(得分:0)
为了使用递归方法计算某些东西(没有全局变量),我们需要返回它。你有:
private static int doQuickSort(int array[], int start, int end)
这是正确的想法。但由于比较实际上发生在
之内 private static int partition(int array[], int start, int end)
你需要让分区返回多少次比较。
这给我们留下了两个选择: