我正在研究3D拉普拉斯算子。我的代码成功,大小N = 32,但N = 64或N = 128我有一些不正确的结果:
#include <iostream>
#include <sys/time.h>
#include <cuda.h>
#include <ctime>
#include"res3dcb.cuh"
#include <math.h>
using namespace std;
// Let's start the main program.
int main(void) {
// Choice of N.
int N;
cout<<"Choose matrix dimension (32, 64 or 128)"<<endl;
cin>>N;
int size=(N+2)*(N+2)*(N+2)*sizeof(float);
// Variable statement.
struct timeval t1, t2;
float *x_d, *y_d;
float *x,*y;
float gflops;
float NumOps;
//Init x and y.
x = new float[size];
y = new float[size];
for (int i=1;i<N+1;i++)
for (int j=1;j<N+1;j++)
for (int k=1;k<N+1;k++) {
x[i*(N+2)*(N+2)+j*(N+2)+k]=1;
}
// Shadow cases.
for (int i=1;i<N+1;i++) {
for (int j=1;j<N+1;j++) {
x[i*(N+2)*(N+2)+j*(N+2)]=x[i*(N+2)*(N+2)+j*(N+2)+1];
x[i*(N+2)*(N+2)+j*(N+2)+N+1]=x[i*(N+2)*(N+2)+j*(N+2)+N];
}
for (int k=0;k<N+2;k++) {
x[i*(N+2)*(N+2)+k]=x[i*(N+2)*(N+2)+(N+2)+k];
x[i*(N+2)*(N+2)+(N+1)*(N+2)+k]=x[i*(N+2)*(N+2)+N*(N+2)+k];}
}
for (int j=0;j<N+2;j++)
for (int k=0;k<N+2;k++) {
x[(N+2)*j+k]=x[(N+2)*(N+2)+(N+2)*j+k];
x[(N+1)*(N+2)*(N+2)+(N+2)*j+k]=x[(N+2)*(N+2)*N+(N+2)*j+k];
}
// Display of initial matrix.
int id_stage=-2;
while (id_stage!=-1) {
cout<<"Which initial matrix's stage do you want to display? (-1 if you don't want to diplay another one)"<<endl;
cin>>id_stage;
cout<<endl;
if (id_stage != -1) {
cout<<"Etage "<<id_stage<<" du cube :"<<endl;
for (int j=0;j<N+2;j++) {
cout<<"| ";
for (int k=0;k<N+2;k++) {cout<<x[id_stage*(N+2)*(N+2)+j*(N+2)+k]<<" ";}
cout<<"|"<<endl;
}
cout<<endl;
}
}
// CPU to GPU.
cudaMalloc( (void**) & x_d, size);
cudaMalloc( (void**) & y_d, size);
cudaMemcpy(x_d, x, size, cudaMemcpyHostToDevice) ;
cudaMemcpy(y_d, y, size, cudaMemcpyHostToDevice) ;
// Solver parameters.
dim3 dimGrid(N/32, N/8, N/8);
dim3 dimBlock(16, 8, 8);
// Solver loop.
gettimeofday(&t1, 0);
res3d<<<dimGrid, dimBlock>>>(x_d, y_d, N);
cudaDeviceSynchronize();
gettimeofday(&t2, 0);
double time = (1000000.0*(t2.tv_sec-t1.tv_sec) + t2.tv_usec-t1.tv_usec)/1000000.0;
// Power calculation.
NumOps=(1.0e-9)*N*N*N*7;
gflops = ( NumOps / (time));
// GPU to CPU.
cudaMemcpy(y, y_d, size, cudaMemcpyDeviceToHost);
cudaFree(x_d);
cudaFree(y_d);
// Display of final matrix.
id_stage=-2;
while (id_stage!=-1) {
cout<<"Which output's stage do you want to display? (-1 if you don't want to diplay another one)"<<endl;
cin>>id_stage;
cout<<endl;
if (id_stage != -1) {
cout<<"Etage "<<id_stage<<" du cube :"<<endl;
for (int j=0;j<N+2;j++) {
cout<<"| ";
for (int k=0;k<N+2;k++) {cout<<y[id_stage*(N+2)*(N+2)+j*(N+2)+k]<<" ";}
cout<<"|"<<endl;
}
cout<<endl;
}
}
cout<<"Time : "<<time<<endl;
cout<<"Gflops/s : "<<gflops<<endl;
}
其中:
#ifndef RES2D_MAT_GPU_HPP
#define RES2D_GPU_HPP
#include <iostream>
#include <sys/time.h>
#include <cuda.h>
__global__ void res3d(volatile float* x, float* y, int N)
{
// Variable statement.
__shared__ float sdata[18][10][10];
__shared__ float idata[18][10][10];
int tid = threadIdx.x+1;
int tjd = threadIdx.y+1;
int tkd = threadIdx.z+1;
int i = threadIdx.x + blockIdx.x*(blockDim.x)+1;
int j = threadIdx.y + blockIdx.y*(blockDim.y)+1;
int k = threadIdx.z + blockIdx.z*(blockDim.z)+1;
// Overloading of shared variable's outlines.
float data=0,data1=0;
if (threadIdx.x==0) {
data += x[(N+2)*(N+2)*(i-1)+(N+2)*j+k];
data1 += x[(N+2)*(N+2)*(i-1)+(N+2)*j+k+N*(N+2)*(N+2)/2];
}
if (threadIdx.x==15) {
data += x[(N+2)*(N+2)*(i+1)+(N+2)*j+k];
data1 += x[(N+2)*(N+2)*(i+1)+(N+2)*j+k+N*(N+2)*(N+2)/2];
}
if (threadIdx.y==0) {
data += x[(N+2)*(N+2)*i+(N+2)*(j-1)+k];
data1 += x[(N+2)*(N+2)*i+(N+2)*(j-1)+k+N*(N+2)*(N+2)/2];
}
if (threadIdx.y==7) {
data += x[(N+2)*(N+2)*i+(N+2)*(j+1)+k];
data1 += x[(N+2)*(N+2)*i+(N+2)*(j+1)+k+N*(N+2)*(N+2)/2];
}
if (threadIdx.z==0) {
data += x[(N+2)*(N+2)*i+(N+2)*j+k-1];
data1 += x[(N+2)*(N+2)*i+(N+2)*j+k-1+N*(N+2)*(N+2)/2];
}
if (threadIdx.z==7) {
data += x[(N+2)*(N+2)*i+(N+2)*j+k+1];
data1 += x[(N+2)*(N+2)*i+(N+2)*j+k+1+N*(N+2)*(N+2)/2];
}
// Init shared variable.
sdata[tid][tjd][tkd] = x[(N+2)*(N+2)*i+(N+2)*j+k];
idata[tid][tjd][tkd]=x[(N+2)*(N+2)*i+(N+2)*j+k+N*(N+2)*(N+2)/2];
__syncthreads();
// (small) tiling.
y[(N+2)*(N+2)*i+(N+2)*j+k] = sdata[tid][tjd+1][tkd]
+ sdata[tid][tjd-1][tkd]
+ sdata[tid][tjd][tkd+1]
+ sdata[tid][tjd][tkd-1]
+ sdata[tid+1][tjd][tkd]
+ sdata[tid-1][tjd][tkd]
- 6*sdata[tid][tjd][tkd]+data;
y[(N+2)*(N+2)*i+(N+2)*j+k+N*(N+2)*(N+2)/2] = idata[tid][tjd+1][tkd]
+ idata[tid][tjd-1][tkd]
+ idata[tid][tjd][tkd+1]
+ idata[tid][tjd][tkd-1]
+ idata[tid+1][tjd][tkd]
+ idata[tid-1][tjd][tkd]
- 6*idata[tid][tjd][tkd]+data1;
}
#endif
问题:
我的代码是否有误?或者,如果结果为假,N = 64且N = 128,那么GPU的架构会出现问题吗?
“if”是否是重载共享变量轮廓的好方法?
提前感谢您的帮助。
答案 0 :(得分:1)
你在这里犯了错误:
dim3 dimGrid(N/32, N/8, N/8);
dim3 dimBlock(16, 8, 8);
这应该是:
dim3 dimGrid(N/16, N/8, N/8);
dim3 dimBlock(16, 8, 8);
另外,正如评论中所述,你在这里过度分配内存:
x = new float[size];
y = new float[size];
因为size
是以字节计算的,而不是元素。
答案 1 :(得分:0)
好吧,我发现了错误。 DimGrid和DimBlock没有错,因为我在x轴上耕作。
错误是我的&#34;如果&#34;在全局内核中。这是一种具有更好性能和正确结果的算法:
#include <assert.h>
#include <stdio.h>
#include <iostream>
#include <sys/time.h>
#include <cuda.h>
#include <ctime>
#include <math.h>
#include"reslap3D.cu"
using namespace std;
// Let's start the main program.
int main(void) {
// Variable statement.
struct timeval t1, t2;
float gflops;
float NumOps;
double time;
long int N=128;
int size=(N+2);
int size3=size*size*size*sizeof(float);
float *x = new float[size3];
float *y = new float[size3];
float *d_x;
float *d_y;
//Init x.
for (int i=1;i<N+1;i++)
for (int j=1;j<N+1;j++)
for (int k=1;k<N+1;k++)
x[size*size*i+size*j+k]=cos(k);
// Shadow cells.
for (int i=1;i<N+1;i++) {
for (int j=1;j<N+1;j++) { x[i*(N+2)*(N+2)+j*(N+2)]=x[i*(N+2)*(N+2)+j*(N+2)+1]; x[i*(N+2)*(N+2)+j*(N+2)+N+1]=x[i*(N+2)*(N+2)+j*(N+2)+N];}
for (int k=0;k<N+2;k++) { x[i*(N+2)*(N+2)+k]=x[i*(N+2)*(N+2)+(N+2)+k]; x[i*(N+2)*(N+2)+(N+1)*(N+2)+k]=x[i*(N+2)*(N+2)+N*(N+2)+k];}
}
// CPU to GPU.
cudaMalloc((void **) &d_x, size3);
cudaMalloc((void **) &d_y, size3);
cudaMemcpy(d_x, x, size3, cudaMemcpyHostToDevice);
cudaMemcpy(d_y, y, size3, cudaMemcpyHostToDevice);
// Solver parameters.
dim3 dimBlock(2, 2, 64);
dim3 dimGrid(64, 64);
// Solver loop.
gettimeofday(&t1, 0);
kernel1 <<<dimGrid, dimBlock>>> (d_x, d_y, size, N);
cudaDeviceSynchronize();
gettimeofday(&t2, 0);
time = (1000000.0*(t2.tv_sec-t1.tv_sec) + t2.tv_usec-t1.tv_usec)/1000000.0;
// GPU to CPU.
cudaMemcpy(y, d_y, size3, cudaMemcpyDeviceToHost);
cudaFree(d_x);
cudaFree(d_y);
// Power calculation.
NumOps=(1.0e-9)*N*N*N*7;
gflops = ( NumOps / (time));
// Display of final matrix.
int id_stage=-2;
while (id_stage!=-1) {
cout<<"Which output's stage do you want to display? (-1 if you don't want to diplay another one)"<<endl;
cin>>id_stage;
cout<<endl;
if (id_stage != -1) {
cout<<"Stage "<<id_stage<<" of cube :"<<endl;
for (int j=0;j<N+2;j++) {
cout<<"| ";
for (int k=0;k<N+2;k++) {cout<<y[id_stage*(N+2)*(N+2)+j*(N+2)+k]<<" ";}
cout<<"|"<<endl;
}
cout<<endl;
}
}
// Display of performances.
cout<<"Time : "<<time<<endl;
cout<<"Gflops/s : "<<gflops<<endl;
}
使用reslap3D.cu:
#define D(x,y,z) size*size*(x)+size*(y)+z
__global__ void kernel1(float *x, float *y, int size, int N)
{
__shared__ float sdata0[4][4][66];
__shared__ float sdata64[4][4][66];
int c0 = blockIdx.x*blockDim.x + threadIdx.x+1;
int c1 = blockIdx.y*blockDim.y + threadIdx.y+1;
int c2 = threadIdx.z+1;
int i = threadIdx.x+1, j = threadIdx.y+1, k = threadIdx.z+1;
if (threadIdx.x == 0)
{ sdata0[i-1][j][k] = x[D(c0-1,c1,c2)];
sdata64[i-1][j][k] = x[D(c0-1,c1,c2+64)];
}
if (threadIdx.x == 1)
{ sdata0[i+1][j][k] = x[D(c0+1,c1,c2)];
sdata64[i+1][j][k] = x[D(c0+1,c1,c2+64)];
}
if (threadIdx.y == 0)
{ sdata0[i][j-1][k] = x[D(c0,c1-1,c2)];
sdata64[i][j-1][k] = x[D(c0,c1-1,c2+64)];
}
if (threadIdx.y == 1)
{ sdata0[i][j+1][k] = x[D(c0,c1+1,c2)];
sdata64[i][j+1][k] = x[D(c0,c1+1,c2+64)];
}
if (threadIdx.z == 0)
{ sdata0[i][j][k-1] = x[D(c0,c1,c2-1)];
sdata64[i][j][k-1] = x[D(c0,c1,c2+63)];
}
if (threadIdx.z == 63)
{ sdata0[i][j][k+1] = x[D(c0,c1,c2+1)];
sdata64[i][j][k+1] = x[D(c0,c1,c2+65)];
}
sdata0[i][j][k] = x[D(c0,c1,c2)];
sdata64[i][j][k] = x[D(c0,c1,c2+64)];
__syncthreads();
y[D(c0, c1, c2)] = sdata0[i+1][j][k]
+ sdata0[i-1][j][k]
+ sdata0[i][j+1][k]
+ sdata0[i][j-1][k]
+ sdata0[i][j][k+1]
+ sdata0[i][j][k-1]
- 6 * sdata0[i][j][k];
y[D(c0, c1, c2+64)] = sdata64[i+1][j][k]
+ sdata64[i-1][j][k]
+ sdata64[i][j+1][k]
+ sdata64[i][j-1][k]
+ sdata64[i][j][k+1]
+ sdata64[i][j][k-1]
- 6 * sdata64[i][j][k];
}