我一直在我的PC上分析我的多级数据。我现在正在使用Mac并运行相同的模型。一些输出是相同的,但有些是完全不同的。我似乎无法找出原因。这是模型:
> loss.2 <- glmer.nb(Loss_across.Chain ~ Posn.c*Valence.c + (Valence.c|mood.c/Chain), data = FinalData_forpoisson, control = glmerControl(optimizer = "bobyqa", check.conv.grad = .makeCC("warning", 0.05)))
在PC上我得到了这个输出:
Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
Family: Negative Binomial(4.9852) ( log )
Formula: Loss_across.Chain ~ Posn.c * Valence.c + (Valence.c | mood.c/Chain)
Data: FinalData_forpoisson
Control: ..3
AIC BIC logLik deviance df.resid
1894.7 1945.3 -936.4 1872.7 725
Scaled residuals:
Min 1Q Median 3Q Max
-1.3882 -0.7225 -0.5190 0.4375 7.1873
Random effects:
Groups Name Variance Std.Dev. Corr
Chain:mood.c (Intercept) 8.782e-15 9.371e-08
Valence.c 9.608e-15 9.802e-08 0.48
mood.c (Intercept) 0.000e+00 0.000e+00
Valence.c 1.654e-14 1.286e-07 NaN
Number of obs: 736, groups: Chain:mood.c, 92; mood.c, 2
Fixed effects:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.19255 0.04794 -4.016 5.92e-05 ***
Posn.c -0.61011 0.04122 -14.800 < 2e-16 ***
Valence.c -0.27372 0.09589 -2.855 0.00431 **
Posn.c:Valence.c 0.38043 0.08245 4.614 3.95e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Correlation of Fixed Effects:
(Intr) Posn.c Vlnc.c
Posn.c 0.491
Valence.c 0.029 -0.090
Psn.c:Vlnc. -0.090 0.062 0.491
在Mac上我得到了这个输出:
Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
Family: Negative Binomial(4.9852) ( log )
Formula: Loss_across.Chain ~ Posn.c * Valence.c + (Valence.c | mood.c/Chain)
Data: FinalData_forpoisson
Control: ..3
AIC BIC logLik deviance df.resid
1894.7 1945.3 -936.4 1872.7 725
Scaled residuals:
Min 1Q Median 3Q Max
-1.3882 -0.7225 -0.5190 0.4375 7.1873
Random effects:
Groups Name Variance Std.Dev. Corr
Chain:mood.c (Intercept) 1.242e-13 3.524e-07
Valence.c 4.724e-13 6.873e-07 0.98
mood.c (Intercept) 7.998e-16 2.828e-08
Valence.c 3.217e-14 1.793e-07 1.00
Number of obs: 736, groups: Chain:mood.c, 92; mood.c, 2
Fixed effects:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.947e-05 4.794e-02 0.001 1.000
Posn.c 7.441e-05 4.122e-02 0.002 0.999
Valence.c -4.011e-05 9.589e-02 0.000 1.000
Posn.c:Valence.c -6.672e-05 8.245e-02 -0.001 0.999
Correlation of Fixed Effects:
(Intr) Posn.c Vlnc.c
Posn.c 0.491
Valence.c 0.029 -0.090
Psn.c:Vlnc. -0.090 0.062 0.491
有谁知道为什么两个平台的输出可能会有所不同,以及我如何让它们对齐?