当在群集上运行sparkJob超过某个数据大小(~2,5gb)时,我得到“因为SparkContext被关闭而取消了作业”或“执行者丢失”。看着纱桂,我看到被杀的工作是成功的。运行500mb的数据时没有问题。我一直在寻找解决方案,并发现: - “似乎纱线杀死了一些执行者,因为他们要求的内存超出预期。”
有关如何调试的建议吗?
命令我提交我的火花作业:
/opt/spark-1.5.0-bin-hadoop2.4/bin/spark-submit --driver-memory 22g --driver-cores 4 --num-executors 15 --executor-memory 6g --executor-cores 6 --class sparkTesting.Runner --master yarn-client myJar.jar jarArguments
和sparkContext设置
val sparkConf = (new SparkConf()
.set("spark.driver.maxResultSize", "21g")
.set("spark.akka.frameSize", "2011")
.set("spark.eventLog.enabled", "true")
.set("spark.eventLog.enabled", "true")
.set("spark.eventLog.dir", configVar.sparkLogDir)
)
失败的简化代码看起来像
val hc = new org.apache.spark.sql.hive.HiveContext(sc)
val broadcastParser = sc.broadcast(new Parser())
val featuresRdd = hc.sql("select "+ configVar.columnName + " from " + configVar.Table +" ORDER BY RAND() LIMIT " + configVar.Articles)
val myRdd : org.apache.spark.rdd.RDD[String] = featuresRdd.map(doSomething(_,broadcastParser))
val allWords= featuresRdd
.flatMap(line => line.split(" "))
.count
val wordQuantiles= featuresRdd
.flatMap(line => line.split(" "))
.map(word => (word, 1))
.reduceByKey(_ + _)
.map(pair => (pair._2 , pair._2))
.reduceByKey(_+_)
.sortBy(_._1)
.collect
.scanLeft((0,0.0)) ( (res,add) => (add._1, res._2+add._2) )
.map(entry => (entry._1,entry._2/allWords))
val dictionary = featuresRdd
.flatMap(line => line.split(" "))
.map(word => (word, 1))
.reduceByKey(_ + _) // here I have Rdd of word,count tuples
.filter(_._2 >= moreThan)
.filter(_._2 <= lessThan)
.filter(_._1.trim!=(""))
.map(_._1)
.zipWithIndex
.collect
.toMap
错误堆栈
Exception in thread "main" org.apache.spark.SparkException: Job cancelled because SparkContext was shut down
at org.apache.spark.scheduler.DAGScheduler$$anonfun$cleanUpAfterSchedulerStop$1.apply(DAGScheduler.scala:703)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$cleanUpAfterSchedulerStop$1.apply(DAGScheduler.scala:702)
at scala.collection.mutable.HashSet.foreach(HashSet.scala:79)
at org.apache.spark.scheduler.DAGScheduler.cleanUpAfterSchedulerStop(DAGScheduler.scala:702)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onStop(DAGScheduler.scala:1511)
at org.apache.spark.util.EventLoop.stop(EventLoop.scala:84)
at org.apache.spark.scheduler.DAGScheduler.stop(DAGScheduler.scala:1435)
at org.apache.spark.SparkContext$$anonfun$stop$7.apply$mcV$sp(SparkContext.scala:1715)
at org.apache.spark.util.Utils$.tryLogNonFatalError(Utils.scala:1185)
at org.apache.spark.SparkContext.stop(SparkContext.scala:1714)
at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend$MonitorThread.run(YarnClientSchedulerBackend.scala:146)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:567)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1813)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1826)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1839)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1910)
at org.apache.spark.rdd.RDD.count(RDD.scala:1121)
at sparkTesting.InputGenerationAndDictionaryComputations$.createDictionary(InputGenerationAndDictionaryComputations.scala:50)
at sparkTesting.Runner$.main(Runner.scala:133)
at sparkTesting.Runner.main(Runner.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:483)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:672)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:180)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:205)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:120)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
答案 0 :(得分:4)
找到答案。
我的表格保存为20gb的avro文件。执行人试图打开它时。他们每个人都必须将20gb加载到内存中。通过使用csv而不是avro
来解决它答案 1 :(得分:1)
症状是执行程序任务中一个OutOfMemory错误的典型症状。在工作时尝试为执行者增加内存。请参阅saprk-submit,spark-shell等参数--executor-memory。默认值为1G
答案 2 :(得分:1)
&#34; SparkContext的另一个可能原因是关闭&#34;错误是您在评估其他代码后导入jar文件。 (这可能只发生在Spark Notebook中。)
要解决此问题,请将所有:cp myjar.jar
语句移至文件的开头。