很抱歉提出这个问题,如果已经问过,但在我的情况下,我有一个特殊的矩阵,大小为3000000x50,我想把它分成300个大小为10000x50的矩阵。我尝试了这个,但它无法正常工作
>>>import numpy as np
>>>data=np.random.randn(3000000,50)
>>>D=np.matrix.conjugate(data)
>>>ts=50
>>>ts=int(ts) #number of time series that we have from our data
>>>lw=1e4
>>>lw=int(lw) #length of each window
>>>l=len(data)/lw #l is number of windows
>>>l=np.floor(l)
>>>l=int(l)
#Dc is used to seperate each time series in l windows
>>>Dc=np.zeros((l,lw,ts))
>>>for i in range(l):
Dc[i][0:lw-1][0:ts-1]=D[(lw)*(i):(lw*(i+1))-1][0:ts-1]
答案 0 :(得分:4)
您正在寻找np.vsplit
(将数组垂直拆分为多个子阵列(逐行)) -
np.vsplit(data,300)
示例运行 -
In [56]: data
Out[56]:
array([[ 0.46677419, 0.07402051, 0.87270029, 0.12481164],
[ 0.40789713, 0.36018843, 0.41731607, 0.17348898],
[ 0.4701256 , 0.10056201, 0.31289602, 0.18681709],
[ 0.52407036, 0.89913995, 0.59097535, 0.38376443],
[ 0.06734662, 0.24470334, 0.09523911, 0.35680219],
[ 0.91178257, 0.58710922, 0.75099017, 0.24929987]])
In [57]: np.vsplit(data,3)
Out[57]:
[array([[ 0.46677419, 0.07402051, 0.87270029, 0.12481164],
[ 0.40789713, 0.36018843, 0.41731607, 0.17348898]]),
array([[ 0.4701256 , 0.10056201, 0.31289602, 0.18681709],
[ 0.52407036, 0.89913995, 0.59097535, 0.38376443]]),
array([[ 0.06734662, 0.24470334, 0.09523911, 0.35680219],
[ 0.91178257, 0.58710922, 0.75099017, 0.24929987]])]
根据您将如何使用输出,您可以将2D输入数组重新整形为沿第一轴长度为300
的3D数组,这在性能方面必须更加高效和记忆。在Memorywise它必须是空闲的,因为reshaping
只创建numpy数组的视图。实施将是 -
data.reshape(300,-1,data.shape[1])
示例运行 -
In [68]: data
Out[68]:
array([[ 0.46677419, 0.07402051, 0.87270029, 0.12481164],
[ 0.40789713, 0.36018843, 0.41731607, 0.17348898],
[ 0.4701256 , 0.10056201, 0.31289602, 0.18681709],
[ 0.52407036, 0.89913995, 0.59097535, 0.38376443],
[ 0.06734662, 0.24470334, 0.09523911, 0.35680219],
[ 0.91178257, 0.58710922, 0.75099017, 0.24929987]])
In [69]: data.reshape(3,-1,data.shape[1])
Out[69]:
array([[[ 0.46677419, 0.07402051, 0.87270029, 0.12481164],
[ 0.40789713, 0.36018843, 0.41731607, 0.17348898]],
[[ 0.4701256 , 0.10056201, 0.31289602, 0.18681709],
[ 0.52407036, 0.89913995, 0.59097535, 0.38376443]],
[[ 0.06734662, 0.24470334, 0.09523911, 0.35680219],
[ 0.91178257, 0.58710922, 0.75099017, 0.24929987]]])
这是一些运行时测试,用于检查实际拆分与重塑相比的性能 -
In [72]: data = np.random.rand(6000,40)
In [73]: %timeit np.vsplit(data,300)
100 loops, best of 3: 7.05 ms per loop
In [74]: %timeit data.reshape(300,-1,data.shape[1])
1000000 loops, best of 3: 1.08 µs per loop
答案 1 :(得分:2)
如果您的初始数组已正确排序,并且您想要将数组拆分为300个矩阵"框",则只需要重新定义marix
import numpy as np
data = np.random.randn(3000000,50)
newData = data.reshape(300,10000,50) # This is as [300,10000,50] array
print newData[0,...] # Show the first matrix, 1 of 300