我有两张图片,尺寸如下:x,y,z:
img_a:50,50,100
img_b:50,50
我希望将img_a的z-dim从100减少到1,只是抓住与img_b中存储的索引一致的值,逐个像素,因为整个图像中的索引变化。
这应该会产生尺寸为:
的第三张图像img_c:50,50
是否已有处理此问题的功能?
感谢, 彼得
答案 0 :(得分:0)
使用矢量化方法更新。
Here是一个重复的问题,但当行和列尺寸不同时,解决方案目前无效。
下面的代码包含我添加的方法,该方法使用numpy.indices()
显式创建用于查找目的的索引,然后以向量化方式执行循环逻辑。它比numpy.meshgrid()
方法稍慢(2x),但我认为它更容易理解,它也适用于不相等的行和列大小。
时间是近似的,但在我的系统中我得到:
Meshgrid time: 0.319000005722
Indices time: 0.704999923706
Loops time: 13.3789999485
-
import numpy as np
import time
x_dim = 5000
y_dim = 5000
channels = 3
# base data
a = np.random.randint(1, 1000, (x_dim, y_dim, channels))
b = np.random.randint(0, channels, (x_dim, y_dim))
# meshgrid method (from here https://stackoverflow.com/a/27281566/377366 )
start_time = time.time()
i1, i0 = np.meshgrid(xrange(x_dim), xrange(y_dim), sparse=True)
c_by_meshgrid = a[i0, i1, b]
print('Meshgrid time: {}'.format(time.time() - start_time))
# indices method (this is the vectorized method that does what you want)
start_time = time.time()
b_indices = np.indices(b.shape)
c_by_indices = a[b_indices[0], b_indices[1], b[b_indices[0], b_indices[1]]]
print('Indices time: {}'.format(time.time() - start_time))
# loops method
start_time = time.time()
c_by_loops = np.zeros((x_dim, y_dim), np.intp)
for i in xrange(x_dim):
for j in xrange(y_dim):
c_by_loops[i, j] = a[i, j, b[i, j]]
print('Loops time: {}'.format(time.time() - start_time))
# confirm correctness
print('Meshgrid method matches loops: {}'.format(np.all(c_by_meshgrid == c_by_loops)))
print('Loop method matches loops: {}'.format(np.all(c_by_indices == c_by_loops)))