我有一个包含正值和负值的numpy数组,我想调整负数条目,使得总和不是负数,从最负的条目开始。最大调整是使负条目为零。我有一个使用循环的实现,有没有办法使用numpy数组方法?这是我的代码:
initial_values = np.asarray([50,-200,-180,110])
sorted_index = np.argsort(initial_values)
final_values = initial_values
for i, entry in enumerate(final_values[sorted_index]):
ss = final_values.sum()
if ss >= 0:
break
adjustment = max(entry, ss)
final_values[sorted_index[i]] -= adjustment
print final_values
起始数组是[50,-200,-180,110],这种情况下的答案是[50,0,-160,110],所以最负的条目设置为零,然后是下一个最负的条目调整条目以使总和为零。
有没有人有一个更简单,更快速的基于numpy的解决方案?
答案 0 :(得分:2)
这是一种矢量化方法 -
# Get a copy of input as the output
out = initial_values.copy()
# Get sorted indices
sorted_index = np.argsort(out)
# Mask of elements that would be made zero for sure and zero them
mask = out.sum() < out[sorted_index].cumsum()
out[sorted_index[mask]] = 0
# There might be one element left to make the sum absolutely zero.
# Make it less negative to make the absolute sum zero.
out[sorted_index[np.where(mask)[0][-1]+1]] -= out.sum()
示例运行 -
功能定义 -
In [155]: def vectorized(initial_values):
...: out = initial_values.copy()
...: sorted_index = np.argsort(out)
...: mask = out.sum() < out[sorted_index].cumsum()
...: out[sorted_index[mask]] = 0
...: out[sorted_index[np.where(mask)[0][-1]+1]] -= out.sum()
...: return out
...:
...: def org_app(initial_values):
...: final_values = initial_values.copy()
...: sorted_index = np.argsort(initial_values)
...: for i, entry in enumerate(final_values[sorted_index]):
...: ss = final_values.sum()
...: if ss >= 0:
...: break
...: adjustment = max(entry, ss)
...: final_values[sorted_index[i]] -= adjustment
...: return final_values
...:
案例#1:
In [156]: initial_values
Out[156]: array([ 50, -200, -180, 110])
In [157]: vectorized(initial_values)
Out[157]: array([ 50, 0, -160, 110])
In [158]: org_app(initial_values)
Out[158]: array([ 50, 0, -160, 110])
案例#2:
In [163]: initial_values
Out[163]: array([ 50, -20, -14, -22, -15, 6, -21, -19, -17, 4, 5, -56])
In [164]: vectorized(initial_values)
Out[164]: array([ 50, 0, -14, 0, -15, 6, 0, -19, -17, 4, 5, 0])
In [165]: org_app(initial_values)
Out[165]: array([ 50, 0, -14, 0, -15, 6, 0, -19, -17, 4, 5, 0])
运行时测试 -
In [177]: initial_values = np.random.randint(-100,20,(50000))
In [178]: np.array_equal(vectorized(initial_values),org_app(initial_values))
Out[178]: True
In [179]: %timeit org_app(initial_values)
1 loops, best of 3: 2.08 s per loop
In [180]: %timeit vectorized(initial_values)
100 loops, best of 3: 5.7 ms per loop
这是先前提出的方法的稍微改进的(较少的代码和更好的运行时)版本 -
# Get a copy of input as the output
out = initial_values.copy()
# Get sorted indices
sorted_index = np.argsort(out)
# Last index in sorted indexed indices for setting elements in input array to 0's
idx = np.where(out.sum() < out[sorted_index].cumsum())[0][-1]
# Set until idx indexed into sorted_index in turn indexed into input array t0 0's
out[sorted_index[:idx+1]] = 0
# There might be one element left to make the sum absolutely zero.
# Make it less negative to make the absolute sum zero.
out[sorted_index[idx+1]] -= out.sum()
运行时测试 -
In [18]: initial_values = np.random.randint(-100,20,(50000))
In [19]: %timeit vectorized(initial_values)
100 loops, best of 3: 5.58 ms per loop
In [20]: %timeit vectorized_v2(initial_values) # improved version
100 loops, best of 3: 5.4 ms per loop