我有一个如下所示的数据框:
library(dplyr)
df <- data_frame(doc.x = c("a", "b", "c", "d"),
doc.y = c("b", "a", "d", "c"))
所以df
是:
Source: local data frame [4 x 2]
doc.x doc.y
(chr) (chr)
1 a b
2 b a
3 c d
4 d c
这是有序对的列表,a
到d
,但d
到a
,依此类推。什么是类似dplyr的方法,只返回此数据框中的无序对列表?即。
doc.x doc.y
(chr) (chr)
1 a b
2 c d
答案 0 :(得分:7)
使用pmin
和pmax
按字母顺序对对进行排序,即将(b,a)转换为(a,b),然后过滤掉所有重复项。
df %>%
mutate(dx = pmin(doc.x, doc.y), dy = pmax(doc.x, doc.y)) %>%
distinct(dx, dy) %>%
select(-dx, -dy)
doc.x doc.y
(chr) (chr)
1 a b
2 c d
答案 1 :(得分:2)
使用data.table
的替代方式:
df <- data.frame(doc.x = c("a", "b", "c", "d"),
doc.y = c("b", "a", "d", "c"), stringsAsFactors = F)
library(data.table)
setDT(df)
df[, row := 1:nrow(df)]
df <- df[, list(Left = max(doc.x,doc.y),Right = min(doc.x,doc.y)), by = row]
df <- df[, list(Left,Right)]
unique(df)
Left Right
1: b a
2: d c
答案 2 :(得分:1)
使用dplyr
# make character columns into factors
df <- as.data.frame(unclass(df))
df$x.lvl <- levels(df$doc.x)
df$y.lvl <- levels(df$doc.y)
# find unique pairs
res <- df %>%
group_by(doc.x) %>%
transform(x.lvl = order(doc.x),
y.lvl = order(doc.y)) %>%
transform(pair = ifelse(x.lvl < y.lvl,
paste(doc.x, doc.y, sep=","), paste(doc.y, doc.x, sep=","))) %>%
.$pair %>%
unique
唯一对
res
[1] a,b c,d
Levels: a,b c,d
修改
受Backlin的解决方案的启发,基础R
unique(with(df, paste(pmin(doc.x, doc.y), pmax(doc.x, doc.y), sep=","))
[1] "a,b" "c,d"
或存储在data.frame
中unique(with(df, data.frame(lvl1=pmin(doc.x, doc.y), lvl2=pmax(doc.x, doc.y))))
lvl1 lvl2
1 a b
3 c d