目的是在清理数据集时折叠/重新分配级别。
以下是示例:
df <- data.frame(V1 <- c("cat","lion","cat","beast","cat"),
V2 <- c("nice and grumpy","angry","old,but also nice","empty","has friends"),
stringsAsFactors = F); colnames(df) <- c("V1","V2")
>df
V1 V2
1 cat nice and grumpy
2 lion angry
3 cat old,but also nice
4 beast empty
5 cat has friends
兴趣程度为cat
;这些是条目:
parse1 <- V1[grepl("cat",V1)]
#[1] "cat" "cat" "cat"
从那里开始,想法是在V2
,nice
中搜索属性,将cat
级别重命名为nice cat
。此搜索在V2
中找到两个感兴趣的条目:
df.sub <- subset(df,V1=="cat",select=V1:V2)
parse2 <- df.sub$V2[grep("([Nn]ice)",df.sub$V2)]
#[1] "nice and grumpy" "old,but also nice"
理想的最终结果将df
转换为:
V1 V2
1 nice cat nice and grumpy
2 lion king
3 nice cat old,but also nice
4 beast empty
5 cat has friends
有任何想法如何实现这一目标?非常感谢。
答案 0 :(得分:1)
您可以使用data.table
df <- data.frame(V1 <- c("cat","lion","cat","beast","cat"),
V2 <- c("nice and grumpy","angry","old,but also nice","empty","has friends"),
stringsAsFactors = F); colnames(df) <- c("V1","V2")
library(data.table)
DT <- data.table(df)
# All the nice animals
DT[grepl ("([Nn]ice)",V2), V3:= paste0("nice ",V1)]
# All the nice cats
DT[grepl ("([Nn]ice)",V2) & V1=="cat", V4:= paste0("nice ",V1)]
答案 1 :(得分:1)
ifelse
似乎就足够了:
df$V1 <- ifelse(grepl("([Nn]ice)", df$V2),
sub('cat', 'nice cat', df$V1),
df$V1 )
输出:
> df
V1 V2
1 nice cat nice and grumpy
2 lion angry
3 nice cat old,but also nice
4 beast empty
5 cat has friends