如何最好地处理存储在Google BigQuery中不同位置的数据?

时间:2015-09-24 17:13:55

标签: google-bigquery google-cloud-storage google-cloud-datastore

我目前在BigQuery中的工作流程如下:

(1)在公共存储库(存储在美国)中查询数据,(2)将其写入我的存储库中的表,(3)将csv导出到云存储桶,以及(4)在csv上下载csv我工作的服务器和(5)在服务器上使用它。

我现在遇到的问题是我工作的服务器位于欧盟。因此,我需要为在我的美国存储桶和我的EU服务器之间传输数据支付相当多的费用。我现在可以继续在欧盟找到我的桶,但后来我仍然遇到了将数据从美国(BigQuery)传输到EU(桶)的问题。所以我也可以将bq中的数据集设置为位于EU中,但随后我不能再进行任何查询,因为公共存储库中的数据位于美国,不允许在不同位置之间进行查询。

有没有人知道如何处理这个问题?

2 个答案:

答案 0 :(得分:5)

将BigQuery数据集从一个区域复制到另一个区域的一种方法是利用Storage Data Transfer Service。它还没有解决您仍然需要pay for bucket-to-bucket network traffic的事实,但可能会节省一些CPU时间来将数据复制到欧盟的服务器。

流程将是:

  1. 将所有BigQuery表提取到与表相同的区域中的存储桶中。 (推荐Avro格式以获得最佳数据类型保真度和最快加载速度。)
  2. 运行存储传输作业​​,将解压缩的文件从起始位置存储区复制到目标位置的存储区。
  3. 将所有文件加载到位于目标位置的BigQuery数据集中。
  4. Python示例:

    # Copyright 2018 Google LLC
    #
    # Licensed under the Apache License, Version 2.0 (the "License");
    # you may not use this file except in compliance with the License.
    # You may obtain a copy of the License at
    #
    #     https://www.apache.org/licenses/LICENSE-2.0
    #
    # Unless required by applicable law or agreed to in writing, software
    # distributed under the License is distributed on an "AS IS" BASIS,
    # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    # See the License for the specific language governing permissions and
    # limitations under the License.
    
    import datetime
    import sys
    import time
    
    import googleapiclient.discovery
    from google.cloud import bigquery
    import json
    import pytz
    
    
    PROJECT_ID = 'swast-scratch'  # TODO: set this to your project name
    FROM_LOCATION = 'US'  # TODO: set this to the BigQuery location
    FROM_DATASET = 'workflow_test_us'  # TODO: set to BQ dataset name
    FROM_BUCKET = 'swast-scratch-us'  # TODO: set to bucket name in same location
    TO_LOCATION = 'EU'  # TODO: set this to the destination BigQuery location
    TO_DATASET = 'workflow_test_eu'  # TODO: set to destination dataset name
    TO_BUCKET = 'swast-scratch-eu'  # TODO: set to bucket name in destination loc
    
    # Construct API clients.
    bq_client = bigquery.Client(project=PROJECT_ID)
    transfer_client = googleapiclient.discovery.build('storagetransfer', 'v1')
    
    
    def extract_tables():
        # Extract all tables in a dataset to a Cloud Storage bucket.
        print('Extracting {}:{} to bucket {}'.format(
            PROJECT_ID, FROM_DATASET, FROM_BUCKET))
    
        tables = list(bq_client.list_tables(bq_client.dataset(FROM_DATASET)))
        extract_jobs = []
        for table in tables:
            job_config = bigquery.ExtractJobConfig()
            job_config.destination_format = bigquery.DestinationFormat.AVRO
            extract_job = bq_client.extract_table(
                table.reference,
                ['gs://{}/{}.avro'.format(FROM_BUCKET, table.table_id)],
                location=FROM_LOCATION,  # Available in 0.32.0 library.
                job_config=job_config)  # Starts the extract job.
            extract_jobs.append(extract_job)
    
        for job in extract_jobs:
            job.result()
    
        return tables
    
    
    def transfer_buckets():
        # Transfer files from one region to another using storage transfer service.
        print('Transferring bucket {} to {}'.format(FROM_BUCKET, TO_BUCKET))
        now = datetime.datetime.now(pytz.utc)
        transfer_job = {
            'description': '{}-{}-{}_once'.format(
                PROJECT_ID, FROM_BUCKET, TO_BUCKET),
            'status': 'ENABLED',
            'projectId': PROJECT_ID,
            'transferSpec': {
                'transferOptions': {
                    'overwriteObjectsAlreadyExistingInSink': True,
                },
                'gcsDataSource': {
                    'bucketName': FROM_BUCKET,
                },
                'gcsDataSink': {
                    'bucketName': TO_BUCKET,
                },
            },
            # Set start and end date to today (UTC) without a time part to start
            # the job immediately.
            'schedule': {
                'scheduleStartDate': {
                    'year': now.year,
                    'month': now.month,
                    'day': now.day,
                },
                'scheduleEndDate': {
                    'year': now.year,
                    'month': now.month,
                    'day': now.day,
                },
            },
        }
        transfer_job = transfer_client.transferJobs().create(
            body=transfer_job).execute()
        print('Returned transferJob: {}'.format(
            json.dumps(transfer_job, indent=4)))
    
        # Find the operation created for the job.
        job_filter = {
            'project_id': PROJECT_ID,
            'job_names': [transfer_job['name']],
        }
    
        # Wait until the operation has started.
        response = {}
        while ('operations' not in response) or (not response['operations']):
            time.sleep(1)
            response = transfer_client.transferOperations().list(
                name='transferOperations', filter=json.dumps(job_filter)).execute()
    
        operation = response['operations'][0]
        print('Returned transferOperation: {}'.format(
            json.dumps(operation, indent=4)))
    
        # Wait for the transfer to complete.
        print('Waiting ', end='')
        while operation['metadata']['status'] == 'IN_PROGRESS':
            print('.', end='')
            sys.stdout.flush()
            time.sleep(5)
            operation = transfer_client.transferOperations().get(
                name=operation['name']).execute()
        print()
    
        print('Finished transferOperation: {}'.format(
            json.dumps(operation, indent=4)))
    
    
    def load_tables(tables):
        # Load all tables into the new dataset.
        print('Loading tables from bucket {} to {}:{}'.format(
            TO_BUCKET, PROJECT_ID, TO_DATASET))
    
        load_jobs = []
        for table in tables:
            dest_table = bq_client.dataset(TO_DATASET).table(table.table_id)
            job_config = bigquery.LoadJobConfig()
            job_config.source_format = bigquery.SourceFormat.AVRO
            load_job = bq_client.load_table_from_uri(
                ['gs://{}/{}.avro'.format(TO_BUCKET, table.table_id)],
                dest_table,
                location=TO_LOCATION,  # Available in 0.32.0 library.
                job_config=job_config)  # Starts the load job.
            load_jobs.append(load_job)
    
        for job in load_jobs:
            job.result()
    
    
    # Actually run the script.
    tables = extract_tables()
    transfer_buckets()
    load_tables(tables)
    

    前面的示例使用针对BigQuery API的google-cloud-bigquery库和针对Storage Data Transfer API的google-api-python-client。

    请注意,此示例不考虑分区表。

答案 1 :(得分:0)

无论如何,您在美国都有自己需要的数据,所以我认为您有两种选择:

  1. 您可以继续支付许多较小的费用,以便将您的简化数据集从美国转移到欧盟,就像您今天所做的那样。

  2. 您可以支付一次性费用,将原始公共BQ数据集从美国转移到您自己在欧盟的数据集中。从那时起,您运行的所有查询都会停留在同一地区,并且您不再需要进行跨大陆转移。

  3. 这实际上取决于您计划执行的查询次数。如果它不是很多,那么你今天做事的方式似乎是效率最高的。如果它很多,那么移动数据一次(支付前期费用)可能会更便宜。

    也许谷歌有一些神奇的方法可以让它变得更好,但就我所知,你在大西洋的另一边需要处理大量的数据并将其移到另一边。那根线要花钱。