我有一个“CSV”数据文件,格式如下(好吧,它更像是TSV):
event pdg x y z t px py pz ekin 3383 11 -161.515 5.01938e-05 -0.000187112 0.195413 0.664065 0.126078 -0.736968 0.00723234 1694 11 -161.515 -0.000355633 0.000263174 0.195413 0.511853 -0.523429 0.681196 0.00472714 4228 11 -161.535 6.59631e-06 -3.32796e-05 0.194947 -0.713983 -0.0265468 -0.69966 0.0108681 4233 11 -161.515 -0.000524488 6.5069e-05 0.195413 0.942642 0.331324 0.0406377 0.017594
此文件可在pandas
:
from pandas import read_csv, read_table
data = read_csv("test.csv", sep="\t", index_col=False) # Works
data = read_table("test.csv", index_col=False) # Works
但是,当我尝试在blaze
(声明使用pandas关键字参数)中读取它时,会抛出异常:
from blaze import Data
Data("test.csv") # Attempt 1
Data("test.csv", sep="\t") # Attempt 2
Data("test.csv", sep="\t", index_col=False) # Attempt 3
根本没有使用这些作品和熊猫。尝试推断列名称和类型的“嗅探器”仅从标准库调用csv.Sniffer.sniff()
(失败)。
有没有办法如何在大火中正确读取此文件(鉴于其“小兄弟”有几百MB,我想使用大火的顺序处理功能)?
感谢任何想法。
修改:我认为这可能是odo / csv的问题并提出了问题:https://github.com/blaze/odo/issues/327
EDIT2: 完成错误:
Error Traceback (most recent call last) in () ----> 1 bz.Data("test.csv", sep="\t", index_col=False) /home/[username-hidden]/anaconda3/lib/python3.4/site-packages/blaze/interactive.py in Data(data, dshape, name, fields, columns, schema, **kwargs) 54 if isinstance(data, _strtypes): 55 data = resource(data, schema=schema, dshape=dshape, columns=columns, ---> 56 **kwargs) 57 if (isinstance(data, Iterator) and 58 not isinstance(data, tuple(not_an_iterator))): /home/[username-hidden]/anaconda3/lib/python3.4/site-packages/odo/regex.py in __call__(self, s, *args, **kwargs) 62 63 def __call__(self, s, *args, **kwargs): ---> 64 return self.dispatch(s)(s, *args, **kwargs) 65 66 @property /home/[username-hidden]/anaconda3/lib/python3.4/site-packages/odo/backends/csv.py in resource_csv(uri, **kwargs) 276 @resource.register('.+\.(csv|tsv|ssv|data|dat)(\.gz|\.bz2?)?') 277 def resource_csv(uri, **kwargs): --> 278 return CSV(uri, **kwargs) 279 280 /home/[username-hidden]/anaconda3/lib/python3.4/site-packages/odo/backends/csv.py in __init__(self, path, has_header, encoding, sniff_nbytes, **kwargs) 102 if has_header is None: 103 self.has_header = (not os.path.exists(path) or --> 104 infer_header(path, sniff_nbytes)) 105 else: 106 self.has_header = has_header /home/[username-hidden]/anaconda3/lib/python3.4/site-packages/odo/backends/csv.py in infer_header(path, nbytes, encoding, **kwargs) 58 with open_file(path, 'rb') as f: 59 raw = f.read(nbytes) ---> 60 return csv.Sniffer().has_header(raw if PY2 else raw.decode(encoding)) 61 62 /home/[username-hidden]/anaconda3/lib/python3.4/csv.py in has_header(self, sample) 392 # subtracting from the likelihood of the first row being a header. 393 --> 394 rdr = reader(StringIO(sample), self.sniff(sample)) 395 396 header = next(rdr) # assume first row is header /home/[username-hidden]/anaconda3/lib/python3.4/csv.py in sniff(self, sample, delimiters) 187 188 if not delimiter: --> 189 raise Error("Could not determine delimiter") 190 191 class dialect(Dialect): Error: Could not determine delimiter
答案 0 :(得分:3)
我正在使用 Python 2.7.10, dask v0.7.1, blaze v0.8.2和 conda v3.17.0。
conda install dask
conda install blaze
以下是一种导入数据以供 blaze 使用的方法。首先使用 pandas 解析数据,然后将其转换为 blaze 。也许这会破坏目的,但这种方式没有麻烦。
作为旁注,为了正确解析数据文件,你的pandas解析语句中的行应该是:
from blaze import Data
from pandas import DataFrame, read_csv
data = read_csv("csvdata.dat", sep="\s*", index_col=False)
bdata = Data(data)
现在数据格式正确且无错误bdata
:
event pdg x y z t px py \
0 3383 11 -161.515 0.000050 -0.000187 0.195413 0.664065 0.126078
1 1694 11 -161.515 -0.000356 0.000263 0.195413 0.511853 -0.523429
2 4228 11 -161.535 0.000007 -0.000033 0.194947 -0.713983 -0.026547
3 4233 11 -161.515 -0.000524 0.000065 0.195413 0.942642 0.331324
pz ekin
0 -0.736968 0.007232
1 0.681196 0.004727
2 -0.699660 0.010868
这是一个替代方案,使用dask,它可能可以执行相同的分块或您正在寻找的大规模处理。 Dask当然可以很容易地正确加载tsv格式。
In [17]: import dask.dataframe as dd
In [18]: df = dd.read_csv('tsvdata.txt', sep='\t', index_col=False)
In [19]: df.head()
Out[19]:
event pdg x y z t px py \
0 3383 11 -161.515 0.000050 -0.000187 0.195413 0.664065 0.126078
1 1694 11 -161.515 -0.000356 0.000263 0.195413 0.511853 -0.523429
2 4228 11 -161.535 0.000007 -0.000033 0.194947 -0.713983 -0.026547
3 4233 11 -161.515 -0.000524 0.000065 0.195413 0.942642 0.331324
4 854 11 -161.515 0.000032 0.000418 0.195414 0.675752 0.315671
pz ekin
0 -0.736968 0.007232
1 0.681196 0.004727
2 -0.699660 0.010868
3 0.040638 0.017594
4 -0.666116 0.012641
In [20]:
另请参阅:http://dask.pydata.org/en/latest/array-blaze.html#how-to-use-blaze-with-dask