我正在尝试使用多对多映射,查找映射到另一组特定子集的一组子集。
我有很多基因。每个基因是一个或多个COG的成员(反之亦然),例如我有一小组代表酶的COG,例如。 COG1,COG273。
我想找到它们之间具有酶中每个COG成员的所有基因组,但没有不必要的重叠(例如,在这种情况下,基因1和基因6'会像基因6一样假。已经是两个COG的成员。)
在这个例子中,答案是:
虽然我可以获得每个COG的所有成员并创建一个'产品'但这将包含虚假结果(如上所述),其中更多的基因在集合中。
我的映射目前包含在字典中,其中键是基因ID,值是该基因所属的COG ID列表。但是我接受这可能不是存储映射的最佳方式。
答案 0 :(得分:1)
一次基本攻击:
Keep your representation as it is for now.
Initialize a dictionary with the COGs as keys; each value is an initial count of 0.
Now start building your list of enzyme coverage sets (ecs_list), one ecs at a time. Do this by starting at the front of the gene list and working your way to the end, considering all combinations.
Write a recursive routine to solve the remaining COGs in the enzyme. Something like this:
def pick_a_gene(gene_list, cog_list, solution_set, cog_count_dict):
pick the first gene in the list that is in at least one cog in the list.
let the rest of the list be remaining_gene_list.
add the gene to the solution set.
for each of the gene's cogs:
increment the cog's count in cog_count_dict
remove the cog from cog_list (if it's still there).
add the gene to the solution set.
is there anything left in the cog_list?
yes:
pick_a_gene(remaining_gene_list, cog_list, solution_set, cog_count_dict)
no: # we have a solution: check it for minimality
from every non-zero entry in cog_count_dict, subtract 1. This gives us a list of excess coverage.
while the excess list is not empty:
pick the next gene in the solution set, starting from the *end* (if none, break the loop)
if the gene's cogs are all covered by the excess:
remove the gene from the solution set.
decrement the excess count of each of its cogs.
The remaining set of genes is an ECS; add it to ecs_list
这对你有用吗?我相信它适当地涵盖了最小集合,考虑到你有一个很好的例子。请注意,当我们检查最小防护时,从高端开始对照这样的情况:
gene1: cog1, cog5
gene2: cog2, cog5
gene3: cog3
gene4: cog1, cog2, cog4
enzyme: cog1 - cog5
我们可以看到我们需要gene3,gene4和 gene1或gene2。如果我们从低端消除,我们将抛弃gene1并且永远不会找到解决方案。如果我们从高端开始,我们将消除gene2,但在主循环的后期传递中找到该解决方案。
有可能构建一个与此类型存在3向冲突的案例。在这种情况下,我们必须在最小化检查中编写一个额外的循环来找到它们。但是,我认为你的数据对我们来说不是那么讨厌。
答案 1 :(得分:1)
def findGenes(seq1, seq2, llist):
from collections import OrderedDict
from collections import Counter
from itertools import product
od = OrderedDict()
for b,a in llist:
od.setdefault(a,[]).append(b)
llv = []
for k,v in od.items():
if seq1 == k or seq2 == k:
llv.append(v)
# flat list needed for counting genes frequencies
flatL = [ x for sublist in llv for x in sublist]
cFlatl = Counter(flatL)
# this will gather genes that like gene6 have both sequencies
l_lonely = []
for k in cFlatl:
if cFlatl[k] > 1:
l_lonely.append(k)
newL = []
temp = []
for sublist in llv:
for el in sublist:
if el not in l_lonely:
newL.append(el)
temp.append(newL)
newL = []
# temp contains only genes that do not belong to both sequences
# product will connect genes from different sequence groups
p = product(*temp)
for el in list(p):
print(el)
print(l_lonely)
<强>输出:强>
lt = [('gene1','COG1'),('gene1','COG1003'),('gene2','COG2'),('gene3','COG273'),('gene4' ,'COG1'), ('gene5','COG273'),('gene5','COG71'),('gene6','COG1'),('gene6','COG273')]
findGenes('COG1','COG273',lt)
('gene1','gene3')
('gene1','gene5')
('gene4','gene3')
('gene4','gene5')
[ 'gene6']
答案 2 :(得分:0)
这样做适合你吗?请注意,因为你说你有一小组COG,所以我继续进行嵌套for循环;可能有办法优化这个......
为了将来参考,请发布您与问题相关的任何代码。
import itertools
d = {'gene1':['COG1','COG1003'], 'gene2':['COG2'], 'gene3':['COG273'], 'gene4':['COG1'], 'gene5':['COG273','COG71'], 'gene6':['COG1','COG273']}
COGs = [set(['COG1','COG273'])] # example list of COGs containing only one enzyme; NOTE: your data should be a list of multiple sets
# create all pair-wise combinations of our data
gene_pairs = [l for l in itertools.combinations(d.keys(),2)]
found = set()
for pair in gene_pairs:
join = set(d[pair[0]] + d[pair[1]]) # set of COGs for gene pairs
for COG in COGs:
# check if gene already part of enzyme
if sorted(d[pair[0]]) == sorted(list(COG)):
found.add(pair[0])
elif sorted(d[pair[1]]) == sorted(list(COG)):
found.add(pair[1])
# check if gene combinations are part of enzyme
if COG <= join and pair[0] not in found and pair[1] not in found:
found.add(pair)
for l in found:
if isinstance(l, tuple): # if tuple
print l[0], l[1]
else:
print l
答案 3 :(得分:0)
感谢您的建议,他们激励我使用递归来破解某些东西。我想处理任意基因 - cog关系,因此它需要是一个通用的解决方案。这应该产生所有基因(酶),它们之间是所有必需的COG的成员,没有重复的酶和没有多余的基因:
def get_enzyme_cogs(enzyme, gene_cog_dict):
"""Get all COGs of which there is at least one member gene in the enzyme."""
cog_list = []
for gene in enzyme:
cog_list.extend(gene_cog_dict[gene])
return set(cog_list)
def get_gene_by_gene_cogs(enzyme, gene_cog_dict):
"""Get COG memberships for each gene in enzyme."""
cogs_list = []
for gene in enzyme:
cogs_list.append(set(gene_cog_dict[gene]))
return cogs_list
def add_gene(target_enzyme_cogs, gene_cog_dict, cog_gene_dict, proposed_enzyme = None, fulfilled_cogs = None):
"""Generator for all enzymes with membership of all target_enzyme_cogs, without duplicate enzymes or redundant genes."""
base_enzyme_genes = proposed_enzyme or []
fulfilled_cogs = get_enzyme_cogs(base_enzyme_genes, target_enzyme_cogs, gene_cog_dict)
## Which COG will we try to find a member of?
next_cog_to_fill = sorted(list(target_enzyme_cogs-fulfilled_cogs))[0]
gene_members_of_cog = cog_gene_dict[next_cog_to_fill]
for gene in gene_members_of_cog:
## Check whether any already-present gene's COG set is a subset of the proposed gene's COG set, if so skip addition
subset_found = False
proposed_gene_cogs = set(gene_cog_dict[gene]) & target_enzyme_cogs
for gene_cogs_set in get_gene_by_gene_cogs(base_enzyme_genes, target_enzyme_cogs, gene_cog_dict):
if gene_cogs_set.issubset(proposed_gene_cogs):
subset_found = True
break
if subset_found:
continue
## Add gene to proposed enzyme
proposed_enzyme = deepcopy(base_enzyme_genes)
proposed_enzyme.append(gene)
## Determine which COG memberships are fulfilled by the genes in the proposed enzyme
fulfilled_cogs = get_enzyme_cogs(proposed_enzyme, target_enzyme_cogs, gene_cog_dict)
if (fulfilled_cogs & target_enzyme_cogs) == target_enzyme_cogs:
## Proposed enzyme has members of every required COG, so yield
enzyme = deepcopy(proposed_enzyme)
proposed_enzyme.remove(gene)
yield enzyme
else:
## Proposed enzyme is still missing some COG members
for enzyme in add_gene(target_enzyme_cogs, gene_cog_dict, cog_gene_dict, proposed_enzyme, fulfilled_cogs):
yield enzyme
输入:
gene_cog_dict = {'gene1':['COG1','COG1003'], 'gene2':['COG2'], 'gene3':['COG273'], 'gene4':['COG1'], 'gene5':['COG273','COG71'], 'gene6':['COG1','COG273']}
cog_gene_dict = {'COG2': ['gene2'], 'COG1': ['gene1', 'gene4', 'gene6'], 'COG71': ['gene5'], 'COG273': ['gene3', 'gene5', 'gene6'], 'COG1003': ['gene1']}
target_enzyme_cogs = ['COG1','COG273']
用法:
for enzyme in add_gene(target_enzyme_cogs, gene_cog_dict, cog_gene_dict):
print enzyme
输出:
['gene1', 'gene3']
['gene1', 'gene5']
['gene4', 'gene3']
['gene4', 'gene5']
['gene6']
我不知道它的表现。