我认为我遗漏了一些明显的东西,我有以下数据框
df <- data.frame(type = c("cattle", "mixed", "not stated", "other", "sheep", "cattle", "mixed", "not stated", "other", "sheep", "cattle", "mixed", "not stated", "other", "sheep"),
region = c("EA", "EA", "EA", "EA", "EA", "NW", "NW", "NW", "NW", "NW", "S", "S", "S", "S", "S" ),
number = c(14, 9, 80, 0, 2, 36, 15, 45, 0, 7, 12, 35, 92, 18, 1))
我想计算每个地区内的类型比例。我试过了两个:
require(plyr)
ddply(df, .(region, type), mutate,
prop = number/sum(number))
和
transform(df, prop = number/ave(number, region, type, FUN = sum))
哪个给
type region number prop
1 cattle EA 14 1
2 mixed EA 9 1
3 not stated EA 80 1
4 other EA 0 NaN
5 sheep EA 2 1
6 cattle NW 36 1
7 mixed NW 15 1
8 not stated NW 45 1
9 other NW 0 NaN
10 sheep NW 7 1
11 cattle S 12 1
12 mixed S 35 1
13 not stated S 92 1
14 other S 18 1
15 sheep S 1 1
感谢您阅读
答案 0 :(得分:1)
实际上,您只需要应用ddply和group by“region”。
试试这个:
ddply(df,。(region),mutate,prop = number / sum(number))
type region number prop
1 cattle EA 14 0.133333333
2 mixed EA 9 0.085714286
3 not stated EA 80 0.761904762
4 other EA 0 0.000000000
5 sheep EA 2 0.019047619
6 cattle NW 36 0.349514563
7 mixed NW 15 0.145631068
8 not stated NW 45 0.436893204
9 other NW 0 0.000000000
10 sheep NW 7 0.067961165
11 cattle S 12 0.075949367
12 mixed S 35 0.221518987
13 not stated S 92 0.582278481
14 other S 18 0.113924051
15 sheep S 1 0.006329114
原因:您希望按区域对每个组进行摘要,因此您只需要在区域上进行ddply