我想保存(作为镶木地板文件)包含自定义类作为列的Spark DataFrame。该类由另一个自定义类的Seq组成。为此,我以与VectorUDT类似的方式为每个类创建一个UserDefinedType类。我可以按照我的意图使用数据框,但无法将其作为镶木地板(或jason)保存到磁盘 我把它报告为一个bug,但是我的代码可能有问题。我已经实现了一个更简单的例子来说明问题:
import org.apache.spark.sql.SaveMode
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.catalyst.expressions.GenericMutableRow
import org.apache.spark.sql.types._
@SQLUserDefinedType(udt = classOf[AUDT])
case class A(list:Seq[B])
class AUDT extends UserDefinedType[A] {
override def sqlType: DataType = StructType(Seq(StructField("list", ArrayType(BUDT, containsNull = false), nullable = true)))
override def userClass: Class[A] = classOf[A]
override def serialize(obj: Any): Any = obj match {
case A(list) =>
val row = new GenericMutableRow(1)
row.update(0, new GenericArrayData(list.map(_.asInstanceOf[Any]).toArray))
row
}
override def deserialize(datum: Any): A = {
datum match {
case row: InternalRow => new A(row.getArray(0).toArray(BUDT).toSeq)
}
}
}
object AUDT extends AUDT
@SQLUserDefinedType(udt = classOf[BUDT])
case class B(num:Int)
class BUDT extends UserDefinedType[B] {
override def sqlType: DataType = StructType(Seq(StructField("num", IntegerType, nullable = false)))
override def userClass: Class[B] = classOf[B]
override def serialize(obj: Any): Any = obj match {
case B(num) =>
val row = new GenericMutableRow(1)
row.setInt(0, num)
row
}
override def deserialize(datum: Any): B = {
datum match {
case row: InternalRow => new B(row.getInt(0))
}
}
}
object BUDT extends BUDT
object TestNested {
def main(args:Array[String]) = {
val col = Seq(new A(Seq(new B(1), new B(2))),
new A(Seq(new B(3), new B(4))))
val sc = new SparkContext(new SparkConf().setMaster("local[1]").setAppName("TestSpark"))
val sqlContext = new org.apache.spark.sql.SQLContext(sc)
import sqlContext.implicits._
val df = sc.parallelize(1 to 2 zip col).toDF()
df.show()
df.write.mode(SaveMode.Overwrite).save(...)
}
}
这会导致以下错误:
15/09/16 16:44:39错误执行者:阶段1.0中任务0.0的异常 (TID 1)java.lang.IllegalArgumentException:嵌套类型应该是 重复:必需的组数组{required int32 num; } 在 org.apache.parquet.schema.ConversionPatterns.listWrapper(ConversionPatterns.java:42) 在 org.apache.parquet.schema.ConversionPatterns.listType(ConversionPatterns.java:97) 在 org.apache.spark.sql.execution.datasources.parquet.CatalystSchemaConverter.convertField(CatalystSchemaConverter.scala:460) 在 org.apache.spark.sql.execution.datasources.parquet.CatalystSchemaConverter.convertField(CatalystSchemaConverter.scala:318) 在 org.apache.spark.sql.execution.datasources.parquet.CatalystSchemaConverter $$ anonfun $ convertField $ 1.适用(CatalystSchemaConverter.scala:522) 在 org.apache.spark.sql.execution.datasources.parquet.CatalystSchemaConverter $$ anonfun $ convertField $ 1.适用(CatalystSchemaConverter.scala:521) 在 scala.collection.IndexedSeqOptimized $ class.foldl(IndexedSeqOptimized.scala:51) 在 scala.collection.IndexedSeqOptimized $ class.foldLeft(IndexedSeqOptimized.scala:60) 在 scala.collection.mutable.ArrayOps $ ofRef.foldLeft(ArrayOps.scala:108) 在 org.apache.spark.sql.execution.datasources.parquet.CatalystSchemaConverter.convertField(CatalystSchemaConverter.scala:521) 在 org.apache.spark.sql.execution.datasources.parquet.CatalystSchemaConverter.convertField(CatalystSchemaConverter.scala:318) 在 org.apache.spark.sql.execution.datasources.parquet.CatalystSchemaConverter.convertField(CatalystSchemaConverter.scala:526) 在 org.apache.spark.sql.execution.datasources.parquet.CatalystSchemaConverter.convertField(CatalystSchemaConverter.scala:318) 在 org.apache.spark.sql.execution.datasources.parquet.CatalystSchemaConverter $$ anonfun $转换$ 1.适用(CatalystSchemaConverter.scala:311) 在 org.apache.spark.sql.execution.datasources.parquet.CatalystSchemaConverter $$ anonfun $转换$ 1.适用(CatalystSchemaConverter.scala:311) 在 scala.collection.TraversableLike $$ anonfun $表$ 1.适用(TraversableLike.scala:244) 在 scala.collection.TraversableLike $$ anonfun $表$ 1.适用(TraversableLike.scala:244) 在scala.collection.Iterator $ class.foreach(Iterator.scala:727)at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)at scala.collection.IterableLike $ class.foreach(IterableLike.scala:72)at org.apache.spark.sql.types.StructType.foreach(StructType.scala:92)at scala.collection.TraversableLike $ class.map(TraversableLike.scala:244) 在org.apache.spark.sql.types.StructType.map(StructType.scala:92)at org.apache.spark.sql.execution.datasources.parquet.CatalystSchemaConverter.convert(CatalystSchemaConverter.scala:311) 在 org.apache.spark.sql.execution.datasources.parquet.ParquetTypesConverter $ .convertFromAttributes(ParquetTypesConverter.scala:58) 在 org.apache.spark.sql.execution.datasources.parquet.RowWriteSupport.init(ParquetTableSupport.scala:55) 在 org.apache.parquet.hadoop.ParquetOutputFormat.getRecordWriter(ParquetOutputFormat.java:288) 在 org.apache.parquet.hadoop.ParquetOutputFormat.getRecordWriter(ParquetOutputFormat.java:262) 在 。org.apache.spark.sql.execution.datasources.parquet.ParquetOutputWriter(ParquetRelation.scala:94) 在 org.apache.spark.sql.execution.datasources.parquet.ParquetRelation $$匿名$ 3.newInstance(ParquetRelation.scala:272) 在 org.apache.spark.sql.execution.datasources.DefaultWriterContainer.writeRows(WriterContainer.scala:234) 在 org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation $$ anonfun $运行$ 1 $$ anonfun $ $应用MCV $ SP $ 3.apply(InsertIntoHadoopFsRelation.scala:150) 在 org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation $$ anonfun $运行$ 1 $$ anonfun $ $应用MCV $ SP $ 3.apply(InsertIntoHadoopFsRelation.scala:150) 在org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66) 在org.apache.spark.scheduler.Task.run(Task.scala:88)at org.apache.spark.executor.Executor $ TaskRunner.run(Executor.scala:214) 在 java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) 在 java.util.concurrent.ThreadPoolExecutor中的$ Worker.run(ThreadPoolExecutor.java:615) at java.lang.Thread.run(Thread.java:745)15/09/16 16:44:39 WARN TaskSetManager:阶段1.0中丢失的任务0.0(TID 1,localhost):
如果保存带有B而不是A的数据帧没有问题,因为B没有嵌套的自定义类。我错过了什么吗?
答案 0 :(得分:2)
我必须对您的代码进行四次更改才能使其正常工作(在Linux上的Spark 1.6.0中测试),我认为我主要解释他们为什么需要它们。然而,我确实发现自己想知道是否有更简单的解决方案。所有更改都在AUDT
中,如下所示:
sqlType
时,请依赖于BUDT.sqlType
,而不仅仅是BUDT
。 serialize()
中,在每个列表元素上调用BUDT.serialize()
。 deserialize()
中:
toArray(BUDT.sqlType)
而非toArray(BUDT)
BUDT.deserialize()
以下是生成的代码:
class AUDT extends UserDefinedType[A] {
override def sqlType: DataType =
StructType(
Seq(StructField("list",
ArrayType(BUDT.sqlType, containsNull = false),
nullable = true)))
override def userClass: Class[A] = classOf[A]
override def serialize(obj: Any): Any =
obj match {
case A(list) =>
val row = new GenericMutableRow(1)
val elements =
list.map(_.asInstanceOf[Any])
.map(e => BUDT.serialize(e))
.toArray
row.update(0, new GenericArrayData(elements))
row
}
override def deserialize(datum: Any): A = {
datum match {
case row: InternalRow =>
val first = row.getArray(0)
val bs:Array[InternalRow] = first.toArray(BUDT.sqlType)
val bseq = bs.toSeq.map(e => BUDT.deserialize(e))
val a = new A(bseq)
a
}
}
}
所有四个更改都具有相同的特征:处理A
和处理B
之间的关系现在非常明确:用于模式类型,序列化和反序列化。原始代码似乎是基于这样的假设,即Spark SQL将只是弄清楚"这可能是合理的,但显然它并没有。