mpi4py中的共享内存

时间:2015-09-09 16:43:40

标签: python-3.x mpi shared-memory mpi4py memoryview

我使用MPImpi4py)脚本(在单个节点上),该脚本适用于非常大的对象。为了让所有进程都可以访问该对象,我通过comm.bcast()进行分发。这会将对象复制到所有进程并占用大量内存,尤其是在复制过程中。因此,我想分享像指针而不是对象本身。我发现memoryview中的一些功能对于增强流程中对象的工作非常有用。对象的实际内存地址也可以通过memoryview对象字符串表示来访问,并且可以像这样分发:

from mpi4py import MPI

comm = MPI.COMM_WORLD
rank = comm.Get_rank()

if rank:
    content_pointer = comm.bcast(root = 0)
    print(rank, content_pointer)
else:
    content = ''.join(['a' for i in range(100000000)]).encode()
    mv = memoryview(content)
    print(mv)
    comm.bcast(str(mv).split()[-1][: -1], root = 0)

打印:

<memory at 0x7f362a405048>
1 0x7f362a405048
2 0x7f362a405048
...

这就是为什么我认为必须有一种方法可以在另一个过程中重建对象。但是,我在文档中找不到有关如何操作的线索。

简而言之,我的问题是:是否可以在mpi4py中的同一节点上的流程之间共享对象?

1 个答案:

答案 0 :(得分:2)

这是一个使用MPI的共享内存的简单示例,稍微修改了https://groups.google.com/d/msg/mpi4py/Fme1n9niNwQ/lk3VJ54WAQAJ

您可以使用:mpirun -n 2 python3 shared_memory_test.py运行它(假设您将其保存为shared_memory_test.py)

from mpi4py import MPI 
import numpy as np 

comm = MPI.COMM_WORLD 

# create a shared array of size 1000 elements of type double
size = 1000 
itemsize = MPI.DOUBLE.Get_size() 
if comm.Get_rank() == 0: 
    nbytes = size * itemsize 
else: 
    nbytes = 0

# on rank 0, create the shared block
# on rank 1 get a handle to it (known as a window in MPI speak)
win = MPI.Win.Allocate_shared(nbytes, itemsize, comm=comm) 

# create a numpy array whose data points to the shared mem
buf, itemsize = win.Shared_query(0) 
assert itemsize == MPI.DOUBLE.Get_size() 
ary = np.ndarray(buffer=buf, dtype='d', shape=(size,)) 

# in process rank 1:
# write the numbers 0.0,1.0,..,4.0 to the first 5 elements of the array
if comm.rank == 1: 
    ary[:5] = np.arange(5)

# wait in process rank 0 until process 1 has written to the array
comm.Barrier() 

# check that the array is actually shared and process 0 can see
# the changes made in the array by process 1
if comm.rank == 0: 
    print(ary[:10])

应该输出(从流程等级0打印):

[0. 1. 2. 3. 4. 0. 0. 0. 0. 0.]