我想绘制概率密度函数z=f(x,y)
。
我找到了在Color matplotlib plot_surface command with surface gradient
但我不知道如何将z
值转换为grid
,以便我可以绘制它
示例代码和我的修改如下。
import numpy as np
import matplotlib.pyplot as plt
from sklearn import mixture
import matplotlib as mpl
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
%matplotlib inline
n_samples = 1000
# generate random sample, two components
np.random.seed(0)
shifted_gaussian = np.random.randn(n_samples, 2) + np.array([20, 5])
sample = shifted_gaussian
# fit a Gaussian Mixture Model with two components
clf = mixture.GMM(n_components=3, covariance_type='full')
clf.fit(sample)
# Plot it
fig = plt.figure()
ax = fig.gca(projection='3d')
X = np.arange(-5, 5, .25)
Y = np.arange(-5, 5, .25)
X, Y = np.meshgrid(X, Y)
## In example Code, the z is generate by grid
# R = np.sqrt(X**2 + Y**2)
# Z = np.sin(R)
# In my case,
# for each point [x,y], the probability value is
# z = clf.score([x,y])
# but How can I generate a grid Z?
Gx, Gy = np.gradient(Z) # gradients with respect to x and y
G = (Gx**2+Gy**2)**.5 # gradient magnitude
N = G/G.max() # normalize 0..1
surf = ax.plot_surface(
X, Y, Z, rstride=1, cstride=1,
facecolors=cm.jet(N),
linewidth=0, antialiased=False, shade=False)
plt.show()
绘制z
的原始方法是通过网格生成。但就我而言,拟合模型不能以grid-like
样式返回结果,所以问题是我如何生成grid-style z
值并绘制它?
答案 0 :(得分:1)
如果我理解正确,你基本上有一个函数z
在列表中采用两个标量值x,y
并返回另一个标量z_val
。换句话说z_val = z([x,y])
,对吗?
如果是这种情况,您可以执行以下操作(请注意,这不是考虑到效率,而是注重可读性):
from itertools import product
X = np.arange(15) # or whatever values for x
Y = np.arange(5) # or whatever values for y
N, M = len(X), len(Y)
Z = np.zeros((N, M))
for i, (x,y) in enumerate(product(X,Y)):
Z[np.unravel_index(i, (N,M))] = z([x,y])
如果您想使用plot_surface
,请按照以下步骤操作:
X, Y = np.meshgrid(X, Y)
ax.plot_surface(X, Y, Z.T)