我收到了这样的邮件:
Name MailingID Timestamp Event
1 John 1 2014-04-18 Sent
2 John 2 2015-04-21 Sent
3 Mary 1 2015-04-22 Returned
4 Mary 2 2015-04-25 Sent
5 John 1 2015-05-01 Replied
可以创建为DataFrame
:
df <- createDataFrame(sqlContext, data.frame(Name = c('John','John','Mary','Mary','John'),
MailingID = c(1,2,1,2,1),
Timestamp=c('2014-04-18','2015-04-21','2015-04-22','2015-04-25','2015-05-01'),
Event=c('Sent','Sent','Returned','Sent','Replied')))
我想知道谁回复了发送给他/她的最新邮件中的任何一封邮件,所以我可以使用摘要帮助函数和dplyr
:
localDf <- collect(df)
library(lubridate)
library(magrittr)
library(dplyr)
hasRepliedLatest <- function(MailingID, Timestamp, Event, Latest_N) {
length(intersect(MailingID[Event == 'Replied'], MailingID[Event == 'Sent'][1:Latest_N])) > 0
}
localDf %>%
arrange(desc(Timestamp)) %>%
group_by(Name) %>%
summarize(RepliedLatest = hasRepliedLatest(MailingID, Timestamp, Event, 2))
detach(package:dplyr) # to avoid function confliction with SparkR
结果是:
Name RepliedLatest
1 John TRUE
2 Mary FALSE
现在我希望使用SparkR
执行此操作,即DataFrame
而非本地data.frame
。所以我试过了:
df %>%
arrange(desc(df$Timestamp)) %>%
group_by(df$Name) %>%
summarize(RepliedLatest = hasRepliedLatest(df$MailingID, df$Timestamp, df$Event, 2))
然后我收到错误,说我的函数不适用于S4类DataFrame
。如何在SparkR
中正确执行此操作?使用由sqlContext
或sparkRHive.init
创建的sparkRSQL.init
的SQL查询的解决方案也是受欢迎的。
答案 0 :(得分:2)
SparkSQL&lt; = 1.4不支持用户定义的聚合函数,据我所知SparkR根本没有UDF,所以除非你使用当前的开发分支或1.5 RC UDF不是一个选项。
我仍然不确定我是否理解您的数据模型和逻辑,但您可以尝试这样的事情:
# Select last 2 sent events and all other which occurred in this window
tmp <- sql(sqlContext,
"SELECT *, SUM(CASE WHEN event = 'Sent' THEN 1 ELSE 0 END) OVER w AS ind
FROM df WHERE Event IN ('Sent', 'Replied')
HAVING ind <= 2
WINDOW w AS (PARTITION BY name ORDER BY DATE(Timestamp) DESC)")
# Split sent and replied
sent <- tmp %>% filter(tmp$Event == "Sent")
replied <- tmp %>% filter(tmp$Event == "Replied")
registerTempTable(sent, "sent")
registerTempTable(replied, "replied")
# Join and count
sql(sqlContext,
"SELECT
sent.name,
SUM(
CASE WHEN replied.event IS NOT NULL THEN 1
ELSE 0 END
) > 0 AS repliedlatest
FROM sent LEFT JOIN replied ON
sent.name = replied.name AND
sent.mailingid = replied.mailingid
-- Not part of the original logic
WHERE DATE(sent.timestamp) <= DATE(replied.timestamp)
GROUP BY sent.name") %>% head()